

West Winch Housing Access Road ES Chapter 6, AQ, Appendix 2: Operational Phase Methodology Document Reference: ncc/3.06.02

West Winch Housing Access Road

Environmental Statement, Chapter 6: Air Quality, Appendix 2: Operational Phase Methodology

Author: WSP

Document Reference: NCC/3.06.02

Version Number: 001

Date: November 2023

Contents

	Table	es	2
	Figur	res	2
1	Oper	rational Phase: Methodology	3
	1.1	Introduction	3
	1.2	Model verification	9

Tables

Table 1-1 Dispersion Model Input 4
Table 1-2 Background pollutant concentrations (µg/m ³)6
Table 1-3 Comparison of monitored and modelled total annual mean NO ₂ concentrations (µg/m ³) before any adjustment10
Table 1-4 Comparison of monitored and modelled road contributed annual mean NOx concentrations (µg/m ³) and determination of adjustment factor for modelled road contributed NOx
Table 1-5 Comparison of monitored and modelled total annual mean NO ₂ concentrations (µg/m ³) after adjustment of modelled road contributed NOx13
Figures
Figure 1-1 Comparison of monitored to modelled total annual mean NO ₂ concentration before adjustment
Figure 1-2 Comparison of measured road-NOx with unadjusted modelled road-NOx 12
Figure 1-3 Monitored and modelled total annual mean NO ₂ concentration after

iguio		
ad	ustment	13

1 Operational Phase: Methodology

1.1 Introduction

1.1.1 Table 1-1 outlines specific inputs included in the ADMS dispersion model.

Table 1-1 Dispersion Model Input

Item	Notes
Dispersion model software	CERC ADMS-Roads Version 5.0.0.1
Setup	Coordinate system: OSGB 1936 British National Grid (epsq:27700) Dry deposition option used
Source	Road sources
	NO _x , PM ₁₀ and PM _{2.5} emissions calculated for traffic data (Appendix 6-1) using Defra Emissions Factors Toolkit (EFT) version 11.0:
	 Area: England (Not London) Year: 2019, 2027 and 2030 Traffic Format: Basic Split Road Type: Rural (Not London) and Urban (Not London) Output: Air Quality Modelling (g/km/s)
	NH ₃ emissions calculated for traffic data (Appendix 6-1) using Air Quality
	Consultants Ltd Calculator for Road Emissions of Ammonia (CREAM) version V1A
	 Area: England (Not London) Year: 2019, 2027 and 2030 Traffic Format: Basic Split Road Type: Rural (Not London) and Urban (Not London) Output: Air Quality Modelling (g/km/s)
	'NH ₃ _Grassland' added to pollutant pallet with a deposition velocity of 0.02m/s, and
	'NH ₃ _Forest' added to pollutant pallet with a deposition velocity of 0.03m/s
	(Note: deposition velocities taken from AQTAG06, Grassland = short vegetation,
	Forest = tall vegetation)
Meteorology	Marham 2019 Site latitude 52.75° Dispersion site surface roughness 0.4m Dispersion site minimum Monin-Obukhov length 30m Meteorological measurement site surface roughness 0.2m Meteorological measurement site minimum Monin-Obukhov length 10m Surface albedo 0.23 Priestley Taylor parameter 1 Height of wind measurement 10m Wind data in sectors of 10 degrees Meteorological data are hourly sequential
Background pollutant data	Not input to model but incorporated in the post-processing of model outputs to give
	predictions of total pollutant concentrations. Defra background data (2018 reference year) for annual mean concentrations of NOx, NO ₂ , PM ₁₀ and PM _{2.5} for 2019, 2027 and 2030 were used. The future year background predictions assume that emissions reduce over time in line with Government forecasts. Before use, the background data were adjusted to remove in-grid square 'Motorway', 'Trunk A Road' and 'Primary A Road' components as these were modelled explicity using ADMS-Roads and would otherwise be double counted. The background NO _x and NO ₂ data were adjusted using Defra's 'NO2 Adjustment for NO _x Sector Removal Tool' (version 8.0) to remove as these were modelled explicitly.
Grids	Background data for NH ₃ and nitrogen deposition for 2019 were taken from the Air Pollution Information System (APIS). Unlike the Defra background data, the data from APIS require manipulation to predict background concentrations in future years; this was done with reference to the Joint Nature Conservation Committee's Nitrogen Futures publication. For the assessment, the Nitrogen Futures 'business as usual' scenario was adopted whereby NH ₃ background concentrations increase by approximately 0.08% year on year, and Nitrogen deposition (which depends on NOx and NH ₃ levels) decreases by approximately -1.04% year on year. The data for 2030 were assumed to be representative of the 2042 design year. Background data for human receptors are included in Table A-6-2-1 . Background data for ecological receptors are included in Appendix 6-4 .
Glius	opeoneu points (discrete receptors)

Item	Notes
Output	Long-term concentrations (µg/m ³) NO _x , PM ₁₀ , PM _{2.5} , 'NH ₃ _Grassland' and 'NH ₃ _Forest'
	(Note: Grassland = short vegetation, Forest = tall vegetation)
Post-processing of model outputs	Model outputs (i.e. modelled road source contributed) NO_x , PM_{10} and $PM_{2.5}$ were adjusted following model verification (discussed later in this appendix), in accordance with LAQM.TG(22) guidance.
	Total annual mean NO _x (μ g/m ³) = adjusted modelled road source contributed NO _x (μ g/m ³) + background NO _x (μ g/m ³)
	Total annual mean PM_{10} (µg/m ³) = adjusted modelled road source contributed PM_{10} (µg/m ³) + background PM_{10} (µg/m ³)
	Total annual mean PM _{2.5} (μ g/m ³) = adjusted modelled road source contributed PM _{2.5} (μ g/m ³) + background PM _{2.5} (μ g/m ³)
	Defra NO _x to NO ₂ calculator version 8.1 was used to determine road source contributed NO ₂ and total annual mean NO ₂ from adjusted modelled road source contributed NO _x and background NO ₂ .
	To indicate compliance with the 24-hour mean PM_{10} standard, LAQM.TG(22) gives the following equation that relates the annual mean concentration to the number of exceedances of the 50µg/m ³ threshold, where up to 35 exceedances are allowed:
	Number of 24-hour mean PM_{10} exceedances of $50\mu g/m^3 = -18.5 + 0.00145 x$ annual mean ³ + (206 ÷ annual mean)
	Note: where the annual mean PM ₁₀ concentration is less than 16.5µg/m ³ then the number of exceedances of the 24-hour mean objective can be assumed to be zero (the relationship is invalid for annual mean concentrations less than 14.8µg/m ³).
	To indicate compliance with the 1-hour mean NO ₂ standard, LAQM.TG(22) advises that compliance is likely if the annual mean concentration is less than 60µg/m ³ .
	For NH ₃ , no adjustment was undertaken as there were no appropriate monitoring data to allow model verification for this pollutant.
	Total annual mean NH ₃ (μ g/m ³) = modelled road source contributed NH ₃ (μ g/m ³) + background NH ₃ (μ g/m ³)
	Calculation of Nitrogen Deposition
	Step 1 – calculate dry deposition fluxes
	Dry NO ₂ deposition flux (μ g/m ² /s) = road source contributed NO ₂ (μ g/m ³) * dry NO ₂ deposition velocity for short vegetation (0.0015m/s) or tall vegetation (0.003m/s)
	Dry NH ₃ deposition flux (μ g/m ² /s) = road source contributed NH ₃ (μ g/m ³) * dry NH ₃ deposition velocity for short vegetation (0.02m/s) or tall vegetation (0.03m/s)
	Step 2 – convert dry deposition fluxes to dry deposition rates
	Dry nitrogen deposition due to NO ₂ (kg/ha/yr) = dry NO ₂ deposition flux (μ g/m ² /s) * 96
	Dry nitrogen deposition due to NH_3 (kg/ha/yr) = dry NH_3 deposition flux (μ g/m ² /s) * 259.7
	Step 3 – calculate total dry deposition rate
	Total dry nitrogen deposition (kg/ha/yr) = dry nitrogen deposition due to NO ₂ (kg/ha/yr) + dry nitrogen deposition due to NH ₃ (kg/ha/yr) + background nitrogen deposition for short or tall vegetation (kg/ha/yr)

5

West Winch Housing Access Road ES Chapter 6, AQ, Appendix 2: Operational Phase Methodology Document Reference: ncc/3.06.02

Table 1-2 Backgro	und pollutant cond	centrations (µg/m ³)
-------------------	--------------------	----------------------------------

Background grid square X,Y	NO2 2019	РМ ₁₀ 2019	PM _{2.5} 2019	NO2 2027	PM ₁₀ 2027	PM _{2.5} 2027	NO ₂ 2030	PM ₁₀ 2030	PM _{2.5} 2030
565500, 324500	7.9	14.0	8.9	6.3	12.8	7.9	6.0	12.8	7.9
566500, 324500	7.9	15.2	9.1	6.2	14.1	8.2	6.0	14.1	8.2
567500, 324500	8.2	15.1	9.1	6.3	14.0	8.2	6.0	14.0	8.2
565500, 323500	8.2	14.0	8.9	6.5	12.9	8.0	6.2	12.9	8.0
566500, 323500	8.6	17.2	9.7	6.6	16.0	8.8	6.3	16.0	8.8
567500, 323500	8.5	17.2	9.7	6.5	16.0	8.8	6.2	16.0	8.7
565500, 322500	9.6	15.3	9.6	7.4	14.2	8.6	7.0	14.1	8.6
566500, 322500	9.7	17.4	10.0	7.3	16.3	9.0	6.9	16.3	9.0
567500, 322500	8.1	15.4	9.2	6.3	14.3	8.3	6.1	14.3	8.3
564500, 321500	10.0	15.3	9.7	7.9	14.1	8.8	7.5	14.1	8.7
565500, 321500	9.3	15.6	9.5	7.2	14.4	8.6	6.9	14.4	8.6
566500, 321500	8.8	16.4	9.6	6.9	15.3	8.6	6.6	15.2	8.6
564500, 320500	10.9	15.0	9.7	8.5	13.8	8.8	8.1	13.8	8.7
565500, 320500	11.0	16.5	9.9	8.4	15.4	8.9	8.0	15.3	8.9
566500, 320500	8.6	16.3	9.5	6.8	15.2	8.6	6.5	15.2	8.6

West Winch Housing Access Road ES Chapter 6, AQ, Appendix 2: Operational Phase Methodology Document Reference: ncc/3.06.02

Background grid square X,Y	NO2 2019	PM10 2019	PM _{2.5} 2019	NO2 2027	PM10 2027	PM _{2.5} 2027	NO2 2030	PM ₁₀ 2030	PM _{2.5} 2030
561500, 319500	10.7	15.4	9.7	8.5	14.2	8.7	8.1	14.2	8.7
562500, 319500	13.0	16.0	10.2	10.0	14.8	9.3	9.6	14.8	9.2
563500, 319500	12.6	15.5	9.8	10.2	14.3	8.9	9.8	14.3	8.9
564500, 319500	10.7	16.7	10.2	8.2	15.5	9.3	7.8	15.5	9.3
565500, 319500	9.2	16.2	9.8	7.2	15.0	8.8	6.9	15.0	8.8
560500, 318500	10.8	16.4	10.0	8.1	15.3	9.0	7.6	15.2	9.0
561500, 318500	13.0	16.5	10.4	9.8	15.3	9.4	9.2	15.3	9.4
562500, 318500	13.1	16.4	10.1	9.8	15.2	9.2	9.2	15.2	9.1
563500, 318500	14.5	17.7	10.6	10.8	16.5	9.6	10.2	16.5	9.6
564500, 318500	9.6	17.2	9.9	7.4	16.0	9.0	7.1	16.0	9.0
565500, 318500	8.2	16.6	9.6	6.4	15.5	8.7	6.2	15.4	8.7
560500, 317500	9.7	15.3	9.3	7.9	14.1	8.4	7.7	14.1	8.4
561500, 317500	10.6	15.6	9.4	8.8	14.4	8.5	8.5	14.4	8.5
562500, 317500	10.8	16.3	9.7	8.7	15.1	8.7	8.4	15.1	8.7
563500, 317500	10.1	16.2	9.8	7.7	15.1	8.9	7.3	15.0	8.9
564500, 317500	8.6	17.5	9.9	6.7	16.3	9.0	6.4	16.3	9.0

West Winch Housing Access Road ES Chapter 6, AQ, Appendix 2: Operational Phase Methodology Document Reference: ncc/3.06.02

Background grid square X,Y	NO2 2019	PM ₁₀ 2019	PM _{2.5} 2019	NO2 2027	PM ₁₀ 2027	PM _{2.5} 2027	NO2 2030	PM ₁₀ 2030	PM _{2.5} 2030
565500, 317500	7.9	16.0	9.4	6.2	14.9	8.5	6.0	14.8	8.5
561500, 316500	8.0	17.0	9.7	6.4	15.8	8.7	6.2	15.8	8.7
562500, 316500	8.0	15.9	9.4	6.4	14.8	8.5	6.1	14.8	8.5
563500, 316500	8.6	15.9	9.6	6.7	14.8	8.6	6.4	14.8	8.6
564500, 316500	8.4	16.5	9.7	6.5	15.3	8.7	6.2	15.3	8.7
565500, 316500	8.3	15.5	9.4	6.4	14.3	8.5	6.1	14.3	8.5
563500, 315500	8.4	15.8	9.5	6.5	14.6	8.6	6.2	14.6	8.6
564500, 315500	7.7	15.3	9.2	6.1	14.1	8.3	5.8	14.1	8.3
563500, 314500	8.0	16.1	9.6	6.2	15.0	8.7	5.9	15.0	8.7
564500, 314500	7.4	16.5	9.5	5.8	15.3	8.6	5.6	15.3	8.6
563500, 313500	8.2	16.6	9.7	6.5	15.4	8.7	6.2	15.4	8.7
564500, 313500	7.2	16.2	9.4	5.8	15.0	8.5	5.6	15.0	8.5
563500, 312500	7.9	16.0	9.5	6.1	14.9	8.6	5.9	14.8	8.6

1.2 Model verification

- 1.2.1 Model verification was undertaken in accordance with Defra technical guidance LAQM.TG(22).
- 1.2.2 All the monitoring sites included in the model verification were taken from BCKLWN's 2023 Annual Status Report.
- 1.2.3 Diffusion tubes at monitoring locations 62, 94, 95 and 96 were not included in the verification as these locations did not have sufficient traffic data within 200m to accurately model. All other monitoring locations reported by the local authority were not roadside to the affected road network. These locations were also mainly within the nearby Railway Road AQMA, and so were not representative of the more rural study area.
- 1.2.4 Ideally, verification is undertaken using ratified monitoring data from roadside continuous monitoring locations, which are set back the kerb at between 1 and 10m (typically) and are reasonably representative of the receptor locations of interest. However, all monitoring sites that are adjacent to the affected road network are NO₂ diffusion tubes, which are less accurate than well maintained continuous monitoring instruments.
- 1.2.5 The following tables and graphs set out the model verification that was undertaken.
- 1.2.6 Comparison of monitored and modelled total annual mean NO₂ concentrations (µg/m³) before any adjustment.

Table 1-3 Comparison of monitored and modelled total annual mean NO_2 concentrations ($\mu g/m^3)$ before any adjustment

Site ID	Background Annual Mean NO ₂	Total Monitored Annual Mean NO₂ (A)	Total Modelled Annual Mean NO₂ (B)	B – A (C)	C/A (%)
73	8.35	22.10	12.20	-9.9	-45%
76	13.12	19.80	18.62	-1.2	-6%

Figure 1-1 Comparison of monitored to modelled total annual mean NO_2 concentration before adjustment

Best fit line before adjustment

Equation y = 1.2881x

Slope 1.2881

Differences between monitored and modelled concentrations

Within +10%	1
Within -10%	0
Within ±10%	1
Within +10 to +25%	0
Within -10 to -25%	0
Within ± 40 to $\pm 250/$	^
Within ± 10 to $\pm 25\%$	U
Over +25%	U 1
Over +25% Under -25%	1 0
Over +25% Under -25% Greater ±25%	1 0 1

Uncertainty Statistics

Model tends to underestimate concentrations

- 1.2.7 One of the results are within $\pm 10\%$ of the standard for annual mean NO₂ of 40μ g/m³. One of the results is greater than $\pm 25\%$ of the standard for annual mean NO₂ of 40μ g/m³.
- 1.2.8 The ideal values for the RMSE and FB are both 0. Defra recommends that where the RMSE is more than 25% of the standard then model inputs and verification should be revisited to make improvements. As there are only two suitable monitoring locations, the RMSE and fractional bias cannot be reasonably determined.
- 1.2.9 Comparison of monitored and modelled road contributed annual mean NOx concentrations (µg/m³) and determination of adjustment factor for modelled road contributed NOx

Table 1-4 Comparison of monitored and modelled road contributed annual mean NOx concentrations (μ g/m³) and determination of adjustment factor for modelled road contributed NOx

Site ID	Monitored Road NOx (B)	Modelled Road NOx (C)	B/C	Adjusted Modelled Road NOx
73	25.86	6.96	3.71	14.02
76	12.44	10.20	1.22	20.53

Figure 1-2 Comparison of measured road-NOx with unadjusted modelled road-NOx

Best fit line

Equation y = 2.0127x

Slope 2.0127 (adjustment factor)

1.2.10 Comparison of monitored and modelled total annual mean NO_2 concentrations (µg/m³) after adjustment of modelled road contributed NO_x

Table 1-5 Comparison of monitored and modelled total annual mean NO₂ concentrations (µg/m³) after adjustment of modelled road contributed NOx

Site ID	Background Annual Mean NO₂	Total Monitored Annual Mean NO ₂ (A)	Total Modelled Annual Mean NO ₂ (B)	B – A (C)	C/A (%)
73	8.35	22.10	15.99	-6.11	-0.28
76	13.12	19.80	23.96	4.16	0.21

Figure 1-3 Monitored and modelled total annual mean NO_2 concentration after adjustment

Best fit line after adjustment

Equation y = 0.9976x

Slope 0.9976

Differences between modelled and monitored concentrations

Within +10%	0
Within -10%	0
Within ±10%	0
Within +10 to +25%	0
Within -10 to -25%	1
Within ±10 to ±25%	1
Over +25%	1
Under -25%	0
Greater ±25%	1
Within ±25%	1

- 1.2.11 One result is within ±25% of the standard for annual mean NO₂ of 40µg/m³. One result is greater than ±25% of the standard for annual mean NO₂ of 40µg/m³. Again, as there are only two suitable monitoring locations, the RMSE and fractional bias are not reported. It cannot be confirmed if adjustment has helped with providing more accurate results, but adjustment provides a reasonably conservative calculation for the model results.
- 1.2.12 In the absence of any suitable monitoring locations for PM₁₀ and PM_{2.5}, the model adjustment factor for modelled road contributed NOx has also been applied to modelled road contributions of PM₁₀ and PM_{2.5}. Although this is not ideal, it is in line with LAQM.TG(22) procedure where suitable PM monitoring is absent.