

Sheringham Waste Recycling Centre Holt Road Norfolk

Flood Risk Assessment and Surface Water Drainage Strategy October 2023

On behalf of Norfolk County Council

Project Ref: 332249868/4001 | Rev: R3 | Date: October 2023

Document Control Sheet

Project Name:Sheringham Recycling Centre, NorfolkProject Ref:332210167Report Title:Flood Risk Assessment – Revision 3Doc Ref:4001Date:October 2023

	Name	Position	Signature	Date
Prepared by:	Tim Bateman	Senior Engineer	S.	17/11/2022
Reviewed by:	Sam Lonsdale	Engineer	Ste	10/01/2023
Approved by:	Matthew Ingrey	Director	Hereney	10/01/2023
	For and on behalf of Stantec UK Limited			

Revision	Date	Description	Prepared	Reviewed	Approved
R1	August 23	Updated FRA in response to LLFA comments	SL/RO	TB/LF	LF
R2	Sept 23	ISSUED AS DRAFT VERSION FOR CLIENT REVIEW	SL	ТВ	МІ
R3	Oct 23	Final issue following client comment	SL	ТВ	МІ
R4	Jan 24	Amendment to drawing revisions	RO	ТВ	МІ

This report has been prepared by Stantec UK Limited ('Stantec') on behalf of its client to whom this report is addressed ('Client') in connection with the project described in this report and takes into account the Client's particular instructions and requirements. This report was prepared in accordance with the professional services appointment under which Stantec was appointed by its Client. This report is not intended for and should not be relied on by any third party (i.e. parties other than the Client). Stantec accepts no duty or responsibility (including in negligence) to any party other than the Client and disclaims all liability of any nature whatsoever to any such party in respect of this report.

Contents

Execu	tive Sun	nmary	1
1	Introdu	uction	2
	1.1	Scope of Report	2
	1.2	Sources of Information	2
	1.3	Relevant Planning Policy	2
	1.4	Caveats and Exclusions	5
2	Site Se	etting	6
	2.1	Site Description	6
	2.2	Hydrological Setting	6
	2.3	Topography	7
	2.4	Geology and Hydrogeology	8
	2.5	Existing Drainage Arrangements	8
3	Overvi	ew of Flood Risk	. 10
	3.1	Introduction	. 10
	3.2	Flood Zone Map for Planning	. 10
	3.3	Flood Risk from Surface Water	. 11
	3.4	Historic Flood Map	. 12
	3.5	Groundwater Flood Risk	. 12
	3.6	EA Flood Risk from Reservoirs Map	. 13
	3.7	Strategic Flood Risk Assessment	. 13
	3.8	Flooding from sewers	. 13
	3.9	Summary of Flood Risk	. 13
4	Impact	t of Climate Change	. 15
5	Propos	sed Development and Sequential Test	. 16
	5.1	Proposed Development	. 16
	5.2	Flood Risk Vulnerability	. 16
	5.3	NPPF Sequential and Exception Test	. 16
6	Flood	Mitigation Strategy	. 17
	6.1	Surface Water	. 17
	6.2	Sequential Approach	. 17
	6.3	Safe Access	. 17
7	Surfac	e Water Management Strategy	. 18
	7.1	Overview	. 18
	7.2	Design Principals	. 18
	7.3	Surface Water Drainage Design	. 20
	7.4	Water Quality	. 26
	7.5	Maintenance	. 30
	7.6	Foul Water Drainage Strategy	. 33

8	Residual Risk	34
9	Conclusion	35

Figures

Figure 2.1:	Location Plan	6
Figure 2.2:	Drainage Features	7
Figure 2.3:	Site Topography (LiDAR)	7
Figure 2.4:	Existing Recycling Centre Drainage Arrangement	9
Figure 3.1:	EA Flood Map for Planning 1	10
Figure 3.2:	EA Updated Flood Map for Surface Water 1	11
Figure 3.3:	AStGWf mapping (NNDC SFRA, 2017)1	12

Tables

Table 3-1: Summary of Sources of Flood Risk	15 19 21
Table 7-4: Summary of Freeboards for the 1% AEP Storm Event (Including +45% Climate Change	22
	25
Table 7-5: Summary of Freeboard for the 1% AEP Storm Event (Including +45% Climate Change Allowance).	25
Table 7-6: Greenfield Runoff Rates and Comparison.	
Table 7-7: Greenfield Runoff Volumes and Comparison.	26
Table 7-8: Pollution Hazard Indices as per CIRIA C753, Table 26.2	
Table 7-9: Pollution Mitigation Indices – Treatment Train 1 - Service Yard Catchment	
Table 7-10: Pollution Mitigation Indices – Treatment Train 2 - Access Road Catchment	
Table 7-11: Infiltration Swale Maintenance Schedule	31
Table 7-12: Infiltration Basin Maintenance Schedule	32

Appendices

Appendix A	Location Maps
Appendix B	Development Plans
Appendix C	Anglian Water Plans
Appendix D	Environment Agency Correspondence
Appendix E	InfoDrainage Calculations
Appendix F	Greenfield Runoff Calculations
Appendix G	Site Investigation Report - June 2022
Appendix H	Site Infiltration Testing - June 2023
Appendix I	Proprietary Product Information

this page is intentionally blank

Executive Summary

This Flood Risk Assessment (FRA) has been prepared by Stantec on behalf of our client, Norfolk County Council, to accompany a full planning application for the relocation of Sheringham Recycling Centre in Sheringham, Norfolk. The proposal includes the construction of:

- Vehicle access road
- Associated footpaths
- Service area

In accordance with the fundamental objectives of the National Planning Policy Framework (NPPF), the FRA demonstrates that:

- (i) The development is safe
- (ii) The development does not increase flood risk; and
- (iii) The development does not detrimentally affect third parties.

The Environment Agency (EA) Flood Zone map shows the site lies within Flood Zone 1 (as defined in NPPF Planning Practice Guidance (PPG) 'Flood Risk and Coastal Change' Table 1) as follows:

- Flood Zone 1 'Low Probability' (less than 1 in 1,000 (0.1%) annual probability of river or seas flooding)
- Flood Zone 2 'Medium Probability' (between a 1 in 100 (1%) and 1 in 1,000 (0.1%) annual probability of river flooding; or land having between a 1 in 200 (0.5%) and 1 in 1,000 (0.1%) annual probability of sea flooding)
- Flood Zone 3 'High Probability' (greater than 1 in 100 (1%) annual probability of river flooding, or greater than 1 in 200 (0.5%) annual probability of sea flooding)

The proposed relocated recycling centre and associated development are considered to be 'less vulnerable' development. A sequential approach, as advocated by national planning policy, has been followed such that all proposed development will be located in Flood Zone 1. All proposed development is considered appropriate within Flood Zone 1 (ref: National Planning Policy Framework (NPPF) Planning Practice Guidance (PPG) 'Flood Risk and Coastal Change' Table 1).

Since the proposed development is to be located entirely within Flood Zone 1 (i.e., having a 'Low Probability' of flooding), it passes the Sequential Test and does not require the Exception Test.

As such, the FRA confirms that the development is safe, it does not increase flood risk and does not detrimentally affect third parties, in accordance with the objectives of the NPPF and the requirements of national and local planning policy.

1 Introduction

1.1 Scope of Report

- 1.1.1 This Flood Risk Assessment (FRA) has been prepared by Stantec on behalf of our client, Norfolk County Council, to accompany a full planning application for the relocation of Sheringham Recycling Centre in Sheringham, Norfolk.
- 1.1.2 This FRA is based on the available flood risk information for the site as detailed in Section 1.2 and prepared in accordance with the planning policy requirements set out in Section 1.3. The scope of the FRA is consistent with the 'Site-specific Flood Risk Assessment Checklist' from the National Planning Policy Framework (NPPF) Planning Practice Guidance.
- 1.1.3 Stantec has many years of experience in, amongst other areas, the assessment of flood risk, hydrology, flood defence and river engineering. The authors and reviewers of the document are all experienced engineers and members of chartered institutions such as the Chartered Institution of Water and Environmental Management (CIWEM) or the Institution of Civil Engineers (ICE).

1.2 Sources of Information

- 1.2.1 The FRA has been prepared based on the following sources of information:
 - Development layout proposals by Eunomia Research & Consulting,
 - Environment Agency (EA) published 'Open Data' datasets available online, reproduced with OS mapping under licence to Stantec (contains Ordnance Survey data © Crown copyright and database right [2019], contains Environment Agency information © Environment Agency and database right)
 - The Environment Agency (EA) online flood maps at <u>https://flood-map-for-planning.service.gov.uk/</u> and <u>https://flood-warning-information.service.gov.uk/long-term-flood-risk/</u>
 - North Norfolk District Council North Norfolk Strategic Flood Risk Assessment, Final Report: Level 1 (November 2017)
 - North Norfolk District Council Addendum Report for the North Norfolk Strategic Flood Risk Assessment, Version 1 (12th April 2018)
 - Norfolk County Council Norfolk Local Flood Risk Management Strategy, Post Consultation Final (31st July 2015)
- 1.2.2 Consultation with Norfolk County Council (NCC) in its role as Lead Local Flood Authority (LLFA), the EA and Anglian Water (AW) regarding existing flood risk issues has been undertaken by means of email enquiries.

1.3 Relevant Planning Policy

- 1.3.1 This FRA has been prepared in accordance with the relevant national, regional and local planning policy and statutory authority guidance as follows:
 - National policy contained within the revised National Planning Policy Framework (NPPF) dated February 2019, issued by Ministry of Housing, Communities and Local Government,

with reference to Section 14 'Meeting the challenge of climate change, flooding and coastal change'

- The NPPF Planning Practice Guidance (PPG) released in March 2014 ('Flood Risk and Coastal Change' section) and updated in July 2020 to incorporate the EA 'Flood Risk Assessments: Climate Change Allowances' guidance
- DEFRA Non-statutory Technical Standards for Sustainable Drainage Systems (March 2015)
- The SuDS Manual (C753), CIRIA (2015)
- Sewerage Sector Guidance (SSG) (October 2019) and the associated Design & Construction Guidance (DCG) (March 2020)
- BS 8582:2013 Code of practice for surface water management for development sites (November 2013)
- Environment Agency Rainfall run-off management for developments, Report SC030219 (October 2016)
- Local planning policy contained within the North Norfolk District Council (NNDC) North Norfolk Local Development Framework Core Strategy, adopted September 2008, principally
 - Policy EN 10 Development and Flood Risk which states:

"The sequential test will be applied rigorously across North Norfolk and most new development should be located in **Flood Risk Zone 1**. New development in **Flood Risk Zones 2 and 3a** will be restricted to the following categories:

- water compatible uses
- o *minor development*
- changes of use (to an equal or lower risk category in the flood risk vulnerability classification) where there is no operational development; and
- 'Less vulnerable' uses where the sequential test has been passed.

New development in **Flood Zone 3b** will be restricted to water compatible uses only.

The Strategic Flood Risk Assessment defines zones 2, 3a and 3b in parts of North Norfolk and this will be used to inform the application of the sequential test. Where this information is not available, the Environment Agency Flood Risk Zones and a site-specific Flood Risk Assessment will be used to apply the sequential test.

A site-specific Flood Risk Assessment which takes account of future climate change must be submitted with appropriate planning applications in Flood Zones 2, 3a and 3b and for development proposals of 1 hectare or greater in Flood Zone 1.

Land in Flood Zone 1 that is surrounded by areas of Flood Zones 2 or 3 will be treated as if it is in the higher risk zone and a Flood Risk Assessment will be required to prove that safe access / egress exists for the development or that the land will be sustainable for the duration of the flood period.

Appropriate surface water drainage arrangements for dealing with surface water run-off from new development will be required. The use of Sustainable Drainage Systems will be

the preference unless, following an adequate assessment, soil conditions and / or engineering feasibility dictate otherwise."

- Local planning policy contained within the NNDC North Norfolk Local Plan 2016-2036, First Draft Local Plan (Part 1), consultation period 7 May to 19 June 2019, principally:
 - Policy SD 10 Flood Risk & Surface Water Drainage which states:

"All new development will:

- be located to minimise the risk of flooding, mitigating any such risk through avoidance, design of mitigation and include sustainable drainage (SuDS) principles
- not materially increase the flood risk to other areas and incorporate appropriate surface water drainage mitigation measures to minimise its own risk of flooding
- have regard to climate change, the NNDC Strategic Flood Risk Assessment, 2017 and subsequent updates.

Developers will be required to show that the proposed development:

- 1. complies with national policy including where appropriate the sequential and exceptions tests
- 2. does not increase green field run off rates and vulnerability of the site, or the wider catchment, to flooding from surface water run-off from existing or predicted water flows
- 3. wherever practicable, has a positive impact on the risk of surface water flooding on site and in the surrounding area adjacent to the development; and,
- 4. addresses the potential impact of infiltration upon groundwater Source Protection Zones and/or Critical Drainage Catchments.

Where SuDS are proposed, development proposals should be an integral part of the green infrastructure framework of the site and seek to provide multi-functional benefits by combining water management with open space with benefits for amenity, recreation and wildlife.

The approach to surface water drainage should be based on evidence of an assessment of site conditions and national guidance, reflecting best practice. Developers should provide the appropriate information required to assist in the determination of such application as issued by the LLFA. Detailed maintenance and management arrangements for the lifetime of the development should be submitted. Funding will be via planning conditions and or planning obligations.

Where drainage proposals are submitted which consider flood risk and proposed sustainable drainage systems, a Flood Risk Assessment, FRA and drainage strategy should be submitted. This includes the requirement to provide at the pre application and outline stage details of a drainage strategy/statement showing at least one achievable drainage solution with evidence and sketch layout plan including proposed means of adoption and maintenance of the systems over the lifetime of the development. In adherence with LLFA guidance, drainage strategies must also consider the potential increase in the volume of runoff from a development as a result of increases in the area of impermeable surfaces along with water quality and exceedance issues.

Surface water should be managed at the source, with reduced transfer and discharge elsewhere following the hierarchy of drainage options as reasonably practicable, firstly:

- 1. into the ground (shallow infiltration); then
- 2. to a surface water body; then
- 3. to a surface water sewer, highway drain, or another drainage system, then
- 4. to a combined sewer.

Evidence of how the hierarchy could be achieved is required and where it cannot be provided, evidence of an alternative plan should be submitted. Where there is no alternative option but to discharge surface water into a combined sewer, developers will need to engage with the appropriate bodies and demonstrate why there is no alternative. Clear evidence depicting the above and that the discharge of surface water will be limited to attenuation rate, including climate change allowance, will need to be submitted.

New residential development on sites not allocated in this Local Plan or a Neighbourhood Plan will not be permitted on sites at risk from flooding from any sources except where it can be demonstrated that wider sustainability benefits outweigh flood risk."

1.4 Caveats and Exclusions

- 1.4.1 This FRA has been prepared in accordance with the NPPF and Local Planning Policy. The proposed flood management and surface water management strategies are based on the relevant British Standards (BS8533), the standing advice provided by the EA, or based on common practice.
- 1.4.2 The Construction (Design and Management) Regulations 2015 (CDM Regulations) will apply to any future development of this site which involves "construction" work, as defined by the CDM Regulations. As such it is the responsibility of the proposed developer (ultimate client) to fulfil its duties under the CDM Regulations.
- 1.4.3 The findings of this FRA are based on data available at the time of the study and on the subsequent assessment that has been undertaken in relation to the development proposals as outlined in Section 5.
- 1.4.4 It should be noted that the insurance market applies its own tests in terms of determining premiums and the insurability of properties for flood risk. Those undertaking development in areas which may be at risk of flooding are advised to contact their insurers or the Association of British Insurers (ABI) to seek further guidance prior to commencing development. Stantec does not warrant that the advice in this report will guarantee the availability of flood insurance either now or in the future.

2 Site Setting

2.1 Site Description

- 2.1.1 The existing Sheringham Recycling Centre (approximately 600m²) is operated by Norfolk County Council and located south of Holt Road, East Beckham, Sheringham, NR26 8TW.
- 2.1.2 The proposed relocation site (the 'Site') is located immediately northeast of the existing recycling centre, on the northern side of Holt Road, as shown in Figure 2.1 below. The Ordnance Survey grid reference for the centre of the site is E616271, N341031. A site location plan is included in Appendix A.
- 2.1.3 The site currently comprises 0.366 hectares (ha) of cultivated agricultural land and is bound to the north, east, south, and west by woodland and agricultural land.

Contains Ordnance Survey data © Crown copyright and database right 2021.

Figure 2.1: Location Plan

2.2 Hydrological Setting

- 2.2.1 The closest ordinary watercourse to the site is located in Sheringham Wood (Old Wood) approximately 400m to the west, as shown in Figure 2.2 below. This watercourse flows northwards towards Sheringham Wood and Sheringham further north.
- 2.2.2 There are no other watercourses or waterbodies within the immediate vicinity of the site.

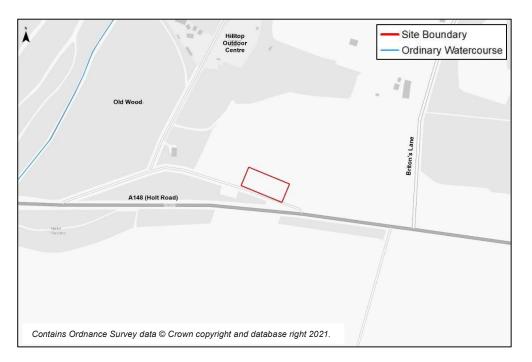


Figure 2.2: Drainage Features

2.3 Topography

- 2.3.1 LiDAR data indicates the site falls gently to the east with higher ground located to the west. Levels range between ~90m AOD at the high point to ~89m AOD along the eastern boundary.
- 2.3.2 A topographical plan of the site, based on opensource data, is included in Appendix A and shown in Figure 2.3 below.

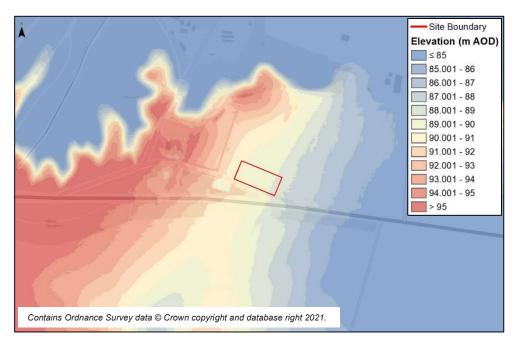


Figure 2.3: Site Topography (LiDAR)

2.4 Geology and Hydrogeology

- 2.4.1 From a review of the 1:50,000 scale geology map from the British Geological Survey (BGS) online digital viewer, the bedrock beneath the site comprises the Wroxham Crag Formation (Sand and Gravel) bedrock overlain with superficial deposits comprising the Briton's Lane Sand and Gravel Member (Sand and Gravel).
- 2.4.2 BGS borehole data from ~300m east of the site (borehole BGS ID. 515139 TG14SE39) gives a standing groundwater level approximately 35 metres below ground level (referenced in 2.3.1) at 46.63m Above Ordnance Datum (AOD). EA groundwater data for a borehole located approximately 1.2km north of the site (Ref. Sheringham and Beeston TG14_624) shows groundwater levels around 35.5m AOD.
- 2.4.3 The bedrock is designated as a 'Principal' aquifer and the superficial deposits are designated as a 'Secondary A' aquifer.
- 2.4.4 The National Soil Resources Institute (NSRI) 'Soilscapes for England and Wales' viewer indicates that the site is located on 'freely draining slightly acid sandy soils' with 'freely draining slightly acid loamy soils' further to the east.
- 2.4.5 The site is located within Source Protection Zone 3, as designated by the EA. The boundary between Source Protection Zone 3 and Source Protection Zone 2 (Outer Protection Zone) is located approximately 135m north of the site.
- 2.4.6 A site investigation was undertaken in June 2022 (Appendix G), and additional infiltration testing was undertaken in June 2023 (Appendix H). No groundwater was encountered up to the maximum test depth of 15.45m below ground level (Borehole 09, Appendix G).

2.5 Existing Drainage Arrangements

On-Site Drainage

- 2.5.1 The site consists primarily of open agricultural land, such that surface water would predominately drain via natural infiltration into the ground or would drain via overland flow to the east.
- 2.5.2 The existing Sheringham Household Waste Recycling Centre (i.e., located to the southwest of the proposed site) is drained via a piped network in the southeast corner of the site which discharges into an infiltration ditch (Figure 2.4). Note, this is not part of the proposed new site.
- 2.5.3 In May 2013, Mott MacDonald produced a Drainage Feasibility Study and Risk Assessment report, in which Mott MacDonald undertook an assessment of the groundwater pollution risk from the existing site and proposed upgrades to the drainage layout to manage pollution risk. These drainage upgrades now form the existing drainage layout as descried in paragraph 2.5.2.
- 2.5.4 Mott MacDonald reviewed water quality samples collect from the site in April 2010, highlighting that filtration removes most contaminants from the surface water runoff. Mott MacDonald undertook an assessment using Consim version 2.5 to evidence that the remaining contaminants will not adversely affect the groundwater at water table level (Drainage Feasibility Study and Risk Assessment, May 2013).
- 2.5.5 Mott MacDonald provided a design for the filtration of surface water runoff in accordance with their assessment (Figure 2.5). Mott MacDonald proposed to discharge runoff into an infiltration ditch with 400mm (minimum depth) compost mix overlying 400mm (minimum depth) of Type B filter material.

2.5.6 The proposed infiltration ditch by Mott MacDonald has helped to inform the design of the surface water drainage system for the proposed Waste Recycling Centre (Section 7.3).

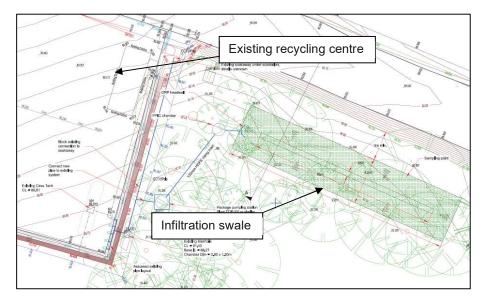


Figure 2.4: Existing Recycling Centre Drainage Arrangement as per Mott MacDonald Report (May 2013), Appendix G.

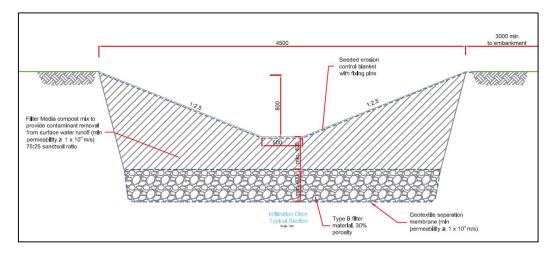


Figure 2.5: Existing Recycling Centre Infiltration Ditch as per Mott MacDonald Report (May 2013), Appendix G.

3 Overview of Flood Risk

3.1 Introduction

3.1.1 The following section has been determined with support from the Stantec GIS flood maps in **Appendix A** based on the EA Opendata datasets available online and reproduced with OS mapping under licence to Stantec.

3.2 Flood Zone Map for Planning

- 3.2.1 The first phase in identifying whether a site is potentially at risk of flooding is to consult the EA's Flood Zone maps, available on the EA's website. This provides an initial indication of the extent of the Flood Zones. The Flood Zones are defined in Table 1 of the NPPF PPG ('Flood Risk and Coastal Change' section) as follows:
 - Flood Zone 1 'Low Probability' land at less than 1 in 1000 (0.1%) annual probability of river or sea flooding
 - Flood Zone 2 'Medium Probability' land between 1 in 100 (1%) and 1 in 1000 (0.1%) annual probability of river flooding, or between 1 in 200 (0.5%) and 1 in 1000 (0.1%) annual probability of sea flooding
 - Flood Zone 3 'High Probability' land at 1 in 100 (1%) or greater annual probability of river flooding, or 1 in 200 (0.5%) or greater annual probability of sea flooding.
- 3.2.2 A copy of the current EA Flood Map (2021) for the site is included in Figure 3.1 and Figure GIS003 of Appendix A.

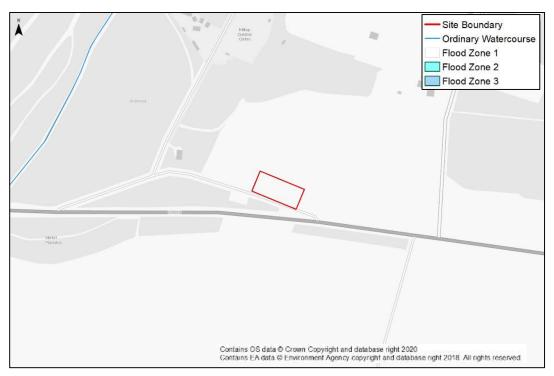


Figure 3.1: EA Flood Map for Planning

3.2.3 The site is shown by the EA's 'Flood Map for Planning' to lie wholly within Flood Zone 1 'Low probability', as can be seen in Figure 3.1 above.

3.3 Flood Risk from Surface Water

- 3.3.1 The EA 'updated Flood Map for Surface Water' ('uFMfSW') shows where areas could be potentially susceptible to surface water flooding in an extreme rainfall event. The latest mapping assesses flooding resulting from severe rainfall events based on the following three scenarios:
 - 1 in 30 (3.3%) annual probability rainfall event ('High' risk)
 - 1 in 100 (1%) annual probability rainfall event ('Medium' risk)
 - 1 in 1000 (0.1%) annual probability rainfall event ('Low' risk)
- 3.3.2 Land at lower than 1 in 1000 (0.1%) annual probability of flooding is considered to be 'Very Low' risk of flooding.
- 3.3.3 An extract of the Updated Flood Map for Surface Water for the site is shown in Figure 3.2. A copy of the map is also included in Figure GIS004 of Appendix A, with Figures GIS005, GIS007 and GIS009 showing predicted flood depths for each of the three risk scenarios.

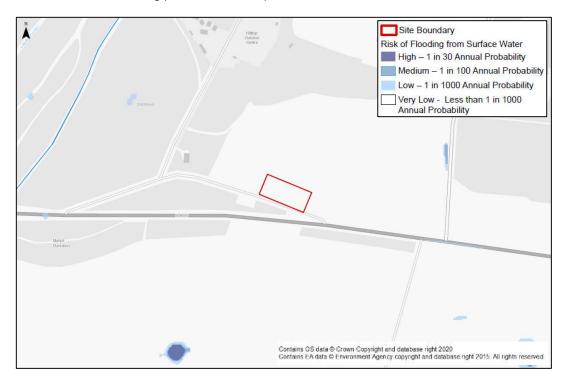


Figure 3.2: EA Updated Flood Map for Surface Water

3.3.4 It should be noted that the surface water maps are generated using a generic methodology on a national scale, whereby rainfall is routed over a ground surface model. The analysis does not take account of any specific local information on below-ground drainage infrastructure and infiltration, although an adjustment is included in urban areas to account for the impact of sewerage and a standard infiltration allowance based on soil type. Consequently, the mapping provides a guide to potentially vulnerable areas based on the general topography of an area.

3.3.5 The Surface Water Flood Map indicates that the whole site has a 'Very Low' risk of surface water flooding. Further to the south and east the maps show areas of 'Low' 'Medium' and 'High' risk with some isolated areas of risk, associated with low-lying topography.

3.4 Historic Flood Map

- 3.4.1 The EA 'Historic Flood Map' is an open-source online dataset showing the maximum extent of all individual recorded flood outlines from river, the sea and groundwater and shows areas of land that have previously been subject to flooding.
- 3.4.2 The mapping indicates that there have been no historic incidents of flooding on site. There are also no records of flooding on site within the NNDC SFRA (2017).

3.5 Groundwater Flood Risk

- 3.5.1 NNDC SFRA includes mapping in **Appendix A** which show Areas Susceptible to Groundwater Flooding (AStGWf). These maps are strategic-scale and show groundwater flood areas on a 1km square grid, where geological and hydrogeological conditions indicate that groundwater might emerge. The maps do not show the likelihood of groundwater flooding occurring, nor do they account for the chance of flooding from groundwater rebound.
- 3.5.2 Appendix A Index Grid: NN_14 in the SFRA indicates that the site is not susceptible to groundwater flooding, as shown in Figure 3.3 below.

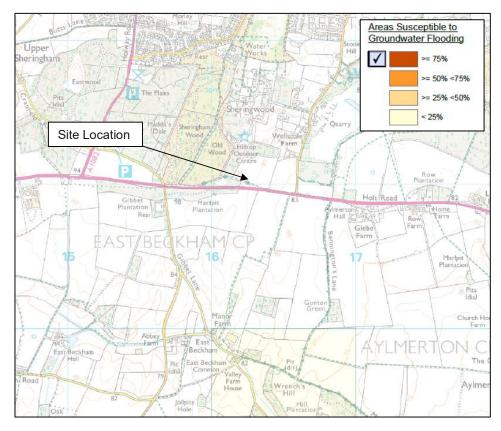


Figure 3.3: AStGWf mapping (NNDC SFRA, 2017)

3.6 EA Flood Risk from Reservoirs Map

- 3.6.1 The EA provides maps showing the risk of flooding in the event of a breach from reservoirs, based only on large reservoirs (over 25,000 cubic metres of water).
- 3.6.2 It should be emphasised that the likelihood of flooding from reservoir breach is very small in any case; the EA is the enforcement authority for the Reservoirs Act (1975) and all large, raised reservoirs are inspected and supervised by reservoir panel engineers. The EA's website states:

'Reservoir flooding is extremely unlikely to happen. There has been no loss of life in the UK from reservoir flooding since 1925. All large reservoirs must be inspected and supervised by reservoir panel engineers. As the enforcement authority for the Reservoirs Act 1975 in England, we ensure that reservoirs are inspected regularly and essential safety work is carried out'.

3.6.3 This mapping shows that the site <u>is not</u> in an area potentially at risk in the event of a reservoir breach.

3.7 Strategic Flood Risk Assessment

- 3.7.1 Information contained in the NNDC SFRA Final Report Level 1 (2017) and the NNDC Addendum SFRA (2018), has been reviewed as part of this study. Groundwater flood risk is highlighted in Section 6.8 of the SFRA (2017) and discussed in Section 3.5 above.
- 3.7.2 Appendix A of the SFRA includes interactive Flood Risk Mapping (Index Grid: NN_14) which includes:
 - Fluvial Flood Zones SFRA map indicates that the site is located within Flood Zone 1, as per the current EA maps in Section 3.2.
 - Surface water flooding extents SFRA map indicates that the site is wholly located within an area of 'very low' flood risk, as per the current EA maps in Section 3.3.
 - Reservoir flooding SFRA Map indicates the site is not within an area at risk of reservoir flooding, as per the current EA maps described in Section 3.6.

3.8 Flooding from sewers

- 3.8.1 Anglian Water Services (AWS) were consulted about records of historic flooding and confirmed in their response (dated 23rd July 2019) "we have no records of flooding in the vicinity that can be attributed to capacity limitations in the public sewerage system" (Appendix D). However, AWS utility plans do not show any sewers within the vicinity of the site.
- 3.8.2 A copy of AWS utility plans is included in **Appendix C**.

3.9 Summary of Flood Risk

3.9.1 Table 3-1 provides an overview of the flood risk to the site, based on the information obtained and detailed in Section 3.

Source of Flooding	Risk of Flooding to Site	Comment/Justification	Source of data	Mitigation requirements for new development (see Section 7)	Risk of Flooding to Site after mitigation
Fluvial		The whole site is located within Flood Zone 1.	SFRA EA Flood Map for Planning (see Section 3.2)	n/a	
Surface Water (Pluvial)		The whole site has a 'Very Low' susceptibility to surface water flooding.	EA surface water flood maps (See Section 3.3) SFRA	Surface water drainage strategy has been prepared following liaison with NCC. (See Section 7)	
Ground water		The NNDC SFRA AStGWf mapping in Appendix A show the whole site has a 'negligible' risk. BGS boreholes show groundwater elevations more than 10m below ground level. No mention of historic groundwater flooding incidents on site in the SFRA.	SFRA BGS Viewer Soilscapes website	n/a	
Reservoir, Canals, Ponds and Other Artificial Sources		The site is not within an area at risk in the event of a reservoir breach.	Flood Risk from Reservoirs Map (see Section 3.6)	n/a	
Sewers		The SFRA does not have any information relating to flooding from sewers or water mains on site. Correspondence with AW indicates there have been incidents of flooding within the vicinity of the site but their asset maps show there are no sewers on site or within the vicinity. Therefore, the risk is considered to be 'low'.	SFRA Anglian Water asset maps	n/a	
		Low/Negligible Risk – No notice a constraint to development	eable impact to site and no	t considered to be	
Key:		Medium Risk – Issue requires consideration but not a significant constraint to development High Risk – Major constraint to development requiring active consideration in mitigation proposals			

Table 3-1:	Summar	of Sources	of Flood Risk
------------	--------	------------	---------------

4 Impact of Climate Change

- 4.1.1 In considering flood risk to the site, it is necessary to fully consider the potential impacts of climate change for the lifetime of the development within the mitigation measures. The EA released new guidance in February 2016 (updated July 2021) on the application of climate change allowances in flood risk assessments¹.
- 4.1.2 Whereas the previous approach was to consider a standard +20% allowance to peak river flows to allow for potential climate change impacts with the associated flood levels provided by the EA the new guidance sets out a range of % allowances that require consideration. These vary according to a number of factors, including site location (river basin district), Flood Zone of the development and flood vulnerability classification of the development.
- 4.1.3 Based on the sites location and topography it is unlikely that climate change will have an impact on the risk of fluvial flooding.
- 4.1.4 The July 2021 document updates the fluvial recommendations, but tidal and pluvial recommendations are unchanged.
- 4.1.5 Increase in rainfall intensities has been considered in the development of the surface water drainage strategy as detailed in Table 4-1 and is discussed in Section 6.

Flood Risk Vulnerability Classification	Total Potential Change Anticipated for the '2080s' (2010 to 2115)		
Chacomoution	Central	Upper End	
Less Vulnerable	+20%	+45%	

Table 4-1: Climate Change – Peak Rainfall Intensity Allowances¹

¹ <u>https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances.</u>

5 Proposed Development and Sequential Test

5.1 **Proposed Development**

5.1.1 The proposed development entails the relocation of an existing recycling centre that is located opposite the proposed site. The site is located immediately northeast of the existing recycling centre, on the northern side of Holt Road. The purpose of the relocation is to provide a new waste recycling facility, with the old one being decommissioned.

The new facility consists of:

- service area
- customer access road
- associated parking
- swale, bioretention basin, rain garden and landscaped areas for surface water drainage
- 5.1.2 A plan of the proposed development is included in **Appendix B**.

5.2 Flood Risk Vulnerability

- 5.2.1 NPPF PPG 'Flood Risk and Coastal Change' Table 2 confirms the '*Flood risk vulnerability classification*' of a site, depending upon the proposed usage. This classification is subsequently applied to PPG Table 3 to determine whether:
 - the existing development is suitable for the flood zone in which it is located, and
 - whether an Exception Test is required for the existing development.
- 5.2.2 The proposed development is classified as 'less vulnerable' development and will be located wholly within **Flood Zone 1**.

5.3 NPPF Sequential and Exception Test

- 5.3.1 The NPPF follows a sequential risk-based approach in determining the suitability of land for development in flood risk areas, with the intention of steering all new development to the lowest flood risk areas.
- 5.3.2 The Sequential Test is a planning exercise to consider whether there are 'reasonably available' alternative sites at lower probability of flooding that would be suitable for the existing development.
- 5.3.3 Since all development will be in Flood Zone 1 and are already located in the area at lowest probability of flooding, the Sequential Test has been passed and the Exception Test is not required.

6 Flood Mitigation Strategy

6.1 Surface Water

6.1.1 The site is located on a ridge of high ground, as described in Sections 2.3 and 2.5, hence there is no risk from overland flows (from offsite) as the only runoff is generated from within the site itself. As the majority of the site is being developed any existing surface water flood risk will be mitigated as all post development site runoff will be captured in the proposed surface water management strategy outlined in Section 7.

6.2 Sequential Approach

- 6.2.1 The NPPF encourages the application of the 'sequential approach' in new developments, i.e., locating the more sensitive/vulnerable elements of new development in the areas which lie at lowest probability of flooding and, conversely, reserve the areas of the site at greatest risk of flooding for the least vulnerable elements of the development (or, preferably, leave such areas undeveloped).
- 6.2.2 All proposed development for this site is in Flood Zone 1 and there are no other Flood Zones present on site, hence the sequential approach is achieved by default.

6.3 Safe Access

- 6.3.1 It is necessary to consider and incorporate safe access arrangements as part of the mitigation, to ensure the users/occupants of the development are safe in times of flooding.
- 6.3.2 As the entire site lies within Flood Zone 1, it is considered that access and egress to and from the site will be safe.

7 Surface Water Management Strategy

7.1 Overview

- 7.1.1 As of April 2015, the LLFA has become a statutory consultee on planning applications for surface water management. As the LLFA, Norfolk County Council are responsible for the approval of surface water drainage systems for new major development. Major development consists of any of the following:
 - (a) the provision of dwelling houses where residential development of 10 or more units; or where the development is to be carried out on a site having an area of 0.5 hectares or more and the number of units is not known
 - (b) the provision of a building or buildings where the floor space to be created by the development is 1,000 square metres or more, or
 - (c) development carried out on a site having an area of 1 hectare or more.
- 7.1.2 With a total development area of 0.366ha and total proposed floor space less than 1,000m², the proposed development is a 'non-major development'.
- 7.1.3 The proposed drainage design (Section 7.3) will discharge runoff within the site boundary; hence, there will be no increased flood risk to external receptors as part of the development proposals.

7.2 Design Principals

- 7.2.1 The NPPF recognises that flood risk and other environmental damage can be managed by minimising changes in the volume and rate of surface runoff from development sites and recommends that priority is given to the use of Sustainable Drainage Systems (SuDS) in new development, this being complementary to the control of development within the floodplain.
- 7.2.2 The Non-Statutory Technical Standards for SuDS set out general recommendations for control of development runoff, including the requirement to ensure that runoff from the site is not increased by development, and the requirement to manage surface water runoff for events up to the 1 in 100-year Return Period (1% AEP) event, including an additional allowance for the projected impacts of climate change.
- 7.2.3 PPG advises that climate change allowances should be determined with reference to the guidance provided in the EA document 'Flood Risk Assessments: Climate Change Allowances (February 2016). As most of the site is proposed for household waste purposes, with an assumed design life of 75 years, an additional allowance on rainfall intensity has been incorporated into the surface water management strategy, as discussed in Section 4.
- 7.2.4 As the intention of SuDS is to mimic the natural drainage regime of the undeveloped site, the NPPF PPG states the following (consistent with the Building Regulations H3 hierarchy):

The aim should be to discharge surface water runoff as high up the following hierarchy of drainage options as reasonably practicable:

- - into the ground (infiltration),
- - to a surface water body,
- - to a surface water sewer, highway drain or another drainage system,
- - to a combined sewer

- 7.2.5 DEFRA guidance document 'Sustainable drainage systems: non-statutory technical standards' (March 2015) sets out the following clauses which are relevant to the design of this site and have been achieved through the proposed drainage design.
 - S7: The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur on any part of the site for a 1 in 30-year rainfall event.
 - S8: The drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur during a 1 in 100-year rainfall event in any part of: a building (including a basement); or in any utility plant susceptible to water (e.g. pumping station or electricity substation) within the development.
 - S9: The design of the site must ensure that, so far as is reasonably practicable, flows resulting from rainfall in excess of a 1 in 100-year rainfall event are managed in exceedance routes that minimise the risks to people and property.
 - S12: Pumping should only be used to facilitate drainage for those parts of the site where it is not reasonably practicable to drain water by gravity.
- 7.2.6 CIRIA C753, the 'SuDS Manual' sets out four key principles of Sustainable (urban) Drainage Systems (SuDS) that have been taken into account in this drainage design. These are referred to as the four pillars of SuDS, and are as follows.
 - Water Quantity
 - Water Quality
 - Biodiversity
 - Amenity

The design objectives for each of the four pillars of SuDS are set out in Table 7-1.

Table 7-1: Design Objectives for the Four Pillars of SUDS

Pillar	Design Objectives
	1. Use surface water runoff as a resource.
	2. Support the management of flood risk in the receiving catchment.
	3. Protect morphology and ecology in receiving surface waters.
Water quantity	4. Preserve and protect natural hydrological systems on the site.
	5. Drain the site effectively.
	6. Manage on-site flood risk.
	7. Design system flexibility/adaptability to cope with future change.
Water quality	 Support the management of water quality in the receiving surface waters and groundwaters.
	2. Design system resilience to cope with future change.

	1. Maximise multi-functionality.
	2. Enhance visual character.
Amonity	3. Deliver safe surface water management systems.
Amenity	4. Support development resilience/adaptability to future change.
	5. Maximise legibility.
	6. Support community environmental learning
	1. Support and protect natural local habitats and spaces.
Biodiversity	2. Contribute to the delivery of local biodiversity objectives.
	3. Contribute to habitat connectivity.
	4. Create diverse, self-sustaining, and resilient ecosystems.

7.3 Surface Water Drainage Design

- 7.3.1 The proposed drainage strategy is to convey surface water runoff from the proposed waste recycling facility via a piped network to infiltration SuDS, where the runoff water will be attenuated, treated and discharged by soaking away into the natural permeable soils underlying the site. The proposed drainage design is set out in the following Stantec drawings.
 - 49868_2001_161 Site Sections
 - 49868_2001_501– Drainage Layout
 - 49868 2001 503 Catchment Plan
 - 49868_2001_521 Construction Details
 - 49868_2001_530 Flood Exceedance Plan
- 7.3.2 The site has been divided into two main catchment areas based on the site topography, proposed layout, and the required surface water treatment processes. As discussed in further detail in Section 7.4, runoff from the service yard will require two treatment processes to achieve the required water quality standard. Whilst runoff from the access road and car parking areas will require one treatment process. The proposed catchment plan (Stantec drawing 49868/2001/503) aims to separate the service yard runoff from the access road runoff to treat water effectively across the development.
- 7.3.3 Runoff from the 'Service Yard' catchment will be positively drained via gullies and then conveyed via a piped drainage system into the infiltration basin, which will contain a layer of bio-retention soil to treat the runoff. The pipe network in the 'Service Yard' catchment will include catch pits and a proprietary water management product to provide further treatment. (Treatment requirements discussed in Section 7.4).
- 7.3.4 Runoff from the 'Access Road' catchment will be collected, treated, attenuated and discharged within the proposed infiltration swale along the northern edge of the development. The infiltration swale will contain a layer of bio-retention soil to treat the runoff. The 'Access Road' catchment

includes a small rain garden (area 5m²) which will attenuate roof runoff from the welfare unit, whilst providing a planted area by the site offices.

- 7.3.5 Infiltration testing across the site has proven that infiltration design is suitable for this development and, therefore, the most favourable discharge method in the NPPF hierarchy can be implemented. It should be noted that rainwater harvesting has been considered for this scheme and discounted due to the low water consumption for operational waste recycling sites and the relative high cost of implementing the required storage and treatment to use rainwater.
- 7.3.6 Infiltration testing for the site is summarised in Appendix G and Appendix H and Section 7.3.11 of this report.

Catchments

- 7.3.7 The total area of the proposed development according to the red line boundary is 0.366ha. The total area of development contributing to the proposed surface water drainage network is 0.324ha. The Percentage Impermeable Area (PIMP) for all contributing areas is considered to be 100% for the purposes of the drainage calculations. A breakdown of the catchment areas is shown in Table 7-2 and on Stantec drawing 49868/2001/503.
- 7.3.8 The remaining 0.042ha is non-positively drained, open green space around the perimeter of the development. Rainwater falling on these areas will infiltrate in-situ or dissipate via evapotranspiration.

Contributin g Area Reference	Contributing to (Feature/ Pipe Reference)	Total Area (ha)	Catchme nt type	Modelled Contributing Area (ha)	Site Catchment Area	Outfall Point
CA_1	S1.000	0.027		0.027		
CA_2	S1.000	0.013		0.013		
CA_3	S1.001	0.016		0.016		
CA_4	S1.002	0.024		0.024	Service Yard	Infiltration Basin
CA_5	S1.002	0.062	Paved	0.062	Taru	Dasin
CA_6	S1.003	0.009	Surface / Roof	0.009		
CA_7	S1.003	0.007	Area	0.007		
CA_8	Infiltration Basin	0.040		0.04		
CA_9	Infiltration Swale	0.034		0.034		
CA_10	Infiltration Swale	0.025		0.025		
CA_11	S2.000	0.009		0.009		
CA_12	Rain Garden	0.002		0.002	Access Road	Infiltration swale
CA_13	Infiltration Swale	0.024		0.024	rioda	onalo
CA_14	Rain Garden	0.001	Open SuDS	0.001		
CA_15	Infiltration Basin	0.032	Feature	0.032	Service Yard	Infiltration Basin
TOTAL	-	0.325	-	0.325	-	-

Table 7-2: Summary of Surface Water Drainage Contributing Areas

Infiltration SuDS Design

- 7.3.9 The proposed infiltration SuDS have been designed in accordance with the infiltration testing performed to date, and the calculated contributing areas from the proposed development. Drainage calculations have been undertaken using a computer-based hydraulic design software (InfoDrainage) to confirm the hydraulic performance of the proposed drainage design.
- 7.3.10 The proposed infiltration SuDS are detailed on Stantec drawings 49868_2001_501 and 521. The proposed infiltration swale has a depth of 400mm, base width of 500mm, and side slope gradient of 1:2.5. The side slope gradient is steeper than the recommended steepest gradient in the SuDS Manual (CIRIA C753) of 1:3. This steeper side slope gradient is necessary due to site development constraints and the required storage capacity within the swale.
- 7.3.11 In relation to health and safety, the design gradient of 1:2.5 is reasonable due to the shallow depth of the infiltration swale. Any personnel accessing the feature for maintenance should be able to step out of the feature. In the unlikely scenario that a member of the public accesses the swale, they should be able to egress from the swale with relative ease.
- 7.3.12 The proposed infiltration basin has a maximum depth of 1.3m, which allows for a minimum of 300mm of freeboard to the maximum design water level. To provide the required storage volume (154m³) with 300mm of freeboard, the basin has been designed with a side slope gradient of 1:2.5 along the western side, a vertical soil-retained face on the eastern side, and 1:3 at the northern and southern ends of the feature.
- 7.3.13 The infiltration basin design includes health and safety considerations due to the depth of the feature and the proposed side slopes being beyond the 1:3 threshold. A timber rail fence is proposed along the western edge to deter public access with gates provided at the northern and southern ends of the basin for maintenance access. The northern, southern and western edges of the infiltration basin are adjacent to the security fence on the site perimeter, so access from these sides is extremely unlikely.
- 7.3.14 For maintenance access to the infiltration basin, the side slope gradients have been softened to 1:3 and the northern and southern ends of the feature. Maintenance personnel who require access to the feature should enter via either end of the feature. We have discussed the proposals with the proposed maintenance firm, Norfolk County Council, who have confirmed acceptance of the proposed SuDS arrangements for maintenance.
- 7.3.15 Vegetation within the SuDS features will help to maintain the structures and protect against soil erosion. Bio-degradable matting has been proposed to provide erosion protection whilst vegetation establishes. The matting will biodegrade over a period of 18 months according to advice from the manufacturer.

Proposed Infiltration Rates

7.3.16 Infiltration testing (Appendix G and Appendix H) has been carried out in site specific locations to reflect the proposed infiltration SuDS. The location of the infiltration testing is marked on Stantec drawing 49868/2001/501, and a summary of the infiltration test results is shown in Table 7-3. The lowest infiltration tests for each location are highlighted in Table 7-3, and these have been converted into m/hr for the design rate.

Trial Pit	Date of	Depth (m	Test 1	Test 2	Test 3	Design
Reference	Testing	bgl)	(m/s)	(m/s)	(m/s)	Rate (m/hr)
01	June 2023	0.75	1.7 x 10 ⁻⁴	9.2 x 10 ⁻⁵	8.2 x 10 ⁻⁵	0.295

Table 7-3: Summary of Infiltration Test Results

02	June 2023	0.75	3.2 x 10 ⁻⁶	3.2 x 10 ⁻⁶	3.1 x 10 ⁻⁶	0.011
03	June 2023	0.75	1.4 x 10 ⁻⁴	6.8 x 10 ⁻⁵	5.9 x 10 ⁻⁵	0.212
04	June 2023	1.00	5.1 x 10 ⁻⁵	3.5 x 10⁻⁵	3.8 x 10 ⁻⁵	0.126
07	June 2022	2.9	8.0 x 10 ⁻⁵	4.8 x 10 ⁻⁵	4.2 x 10 ⁻⁵	0.162
08	June 2022	3.0	6.5 x 10 ⁻⁵	4.8 x 10 ⁻⁵	3.5 x 10 ⁻⁵	0.126

- 7.3.17 Trial pits 01, 02 and 03 are located within the footprint of the proposed infiltration swale. The median design rate of these three tests is 0.212m/hr, which is used to model the infiltration swale.
- 7.3.18 The depths of trial pits 01, 02 and 03 (750mm) are representative of the proposed infiltration swale depth (i.e., 400mm). Furthermore, the trial pit soil logs (Appendix H) show a consistent band of natural sands and gravels, between the proposed swale invert and the base of the trial pits.
- 7.3.19 Trial pits 04, 07 and 08 are located within the footprint of the proposed infiltration basin. The median design rate of these three tests is 0.126m/hr, which is also the design rate in trial pit 04 the infiltration test with the most representative depth of the proposed infiltration basin. Therefore, the design rate of 0.126m /hr is used to model the infiltration basin.
- 7.3.20 The depth of trial pit 04 (i.e., 1,000mm) is representative of the proposed infiltration basin depth (i.e., 1350mm). The soil log for trial pit 04 (Appendix H) shows a consistent band of natural sands and gravels up to depth of 1,000mm (the depth of the trench). The depths of trial pits 07 and 08 are 2,900mm and 3,000mm, respectively. Whilst these are not representative of the design depth of the infiltration basin, they do show infiltration rates that are consistent with trial pits 01 to 04. Furthermore, the soil logs for trial pits 07 and 08 show a consistent band of natural sands and gravels below the topsoil.
- 7.3.21 Trial pit 01 is located 6m from the proposed rain garden. The rate of 0.295m/hr from the test in trial pit 01 has been used for the modelling of the rain garden.

Modelling

- 7.3.22 The proposed drainage network and SuDS have been modelled using InfoDrainage, a computer-based hydraulic modelling software (Appendix E). The proposed design has been modelled for the following storm frequency events for the 15- and 30-minute storm durations using FSR data, and for the 60 5760-minute storm durations using FEH13 data.
 - 50% Annual Exceedance Probability (AEP) i.e., 1 in 2-year Return Period.
 - 3.3% AEP (1 in 30-year Return Period) plus an additional rainfall allowance of 40% for climate change.
 - 1% AEP (1 in 100-year Return Period) plus an additional rainfall allowance of 45% for climate change.
- 7.3.23 The model simulation results show no surcharging in the pipe network for the 50% AEP event, and no flooding in the pipe network for the 1% AEP event (including 45% rainfall allowance for climate change).

- 7.3.24 The model simulation results show no flooding in the infiltration basin for the 1% AEP storm event (including 45% rainfall allowance for climate change). The maximum design water level in the infiltration basin is 392mm below the lowest level around the perimeter of the basin. Hence, a freeboard greater than 300mm is provided for this feature.
- 7.3.25 The model simulations results show no flooding in the infiltration swale for the 3.3% AEP storm event (including 40% rainfall allowance for climate change).
- 7.3.26 The infiltration swale is designed to contain and discharge runoff via infiltration for storm events up to the 1% AEP event plus an additional rainfall allowance of 5% for climate change. Beyond the 1% AEP event +5%, a small quantity of surface runoff will overflow from the infiltration swale at the far eastern end, where the swale levels are lowest, and flow directly into the infiltration basin. For the 1% AEP storm event (including 45% rainfall allowance for climate change), 4.3m³ of runoff will overflow from the infiltration swale into the infiltration basin. The infiltration basin has sufficient capacity for an additional 20.9m³ during the 1% AEP storm event (including 45% rainfall allowance for climate change) whilst still maintaining 300mm of freeboard.
- 7.3.27 The proposed ground levels for the site will direct the overflow runoff from the infiltration swale into the infiltration basin for the 1% AEP storm event (including 45% rainfall allowance for climate change). The overflow route passes through open green space for a distance of two metres and so will have minimal impact on any users onsite and no water will be discharged offsite during the 1% AEP storm event (including 45% rainfall allowance for climate change).

Factor of Safety

7.3.28 In accordance with Table 25.2 in the SuDS Manual, a Factor of Safety of 1.5 is applied in the InfoDrainage calculations for both the proposed infiltration swale and proposed infiltration basin. The consequences of failure are low; any flooding as a result of a reduction in infiltration performance will be directed into open green space. Adherence to the maintenance schedules set out in Section 7.5 will help to ensure the future performance of the proposed infiltration features.

Exceedance

- 7.3.29 In the event of rainfall in exceedance of the maximum design storm (1% AEP +45% for climate change), the proposed surface levels on the site will direct flood water away from site buildings and car parking areas and towards the infiltration basin along the eastern edge of the site.
- 7.3.30 Any exceedance runoff that exceeds the 300mm freeboard in the infiltration basin will flow into the open field adjacent to the eastern boundary of the site. The proposed site levels direct exceedance runoff away from southern boundary to avoid impacting the adjacent access road and nearby A148 highway.
- 7.3.31 The design flood exceedance routes are shown on Stantec drawing 49868/2001/530.

Summary of Freeboard Allowance

- 7.3.32 As discussed in paragraph 7.3.12, a freeboard of 300mm has been allowed for in the proposed infiltration basin. Furthermore, a minimum freeboard of 300mm is provided from building finished floor levels to the design flood levels with the vicinity of each building.
- 7.3.33 Table 7-4 summarises the freeboards that have been achieved from the piped network across the site to the finished floor levels of the proposed buildings. The finished floor levels of the welfare unit and shop unit are 90.575m AOD and 90.363m AOD, respectively.

		Allowance).		
Connection Reference to InfoDrainage Calculations	Max. Water Level (m AOD)	Cover Level (m AOD)	Freeboard to Welfare Unit (mm)	Freeboard to Shop Unit (mm)
S1.000	89.090	90.218	1237	1025
S1.001	88.881	89.908	1362	1150
S1.002	88.645	89.679	1684	1472
S1.003	88.571	89.663	1804	1592
S1.004	88.579	89.507	1855	1643
S3.000	90.103	90.221	368	156*
S2.001	89.080	90.200	1370	1158
\$2.000	89.155	90.100	1339	1127

 Table 7-4: Summary of Freeboards for the 1% AEP Storm Event (Including +45% Climate Change Allowance).

*The proposed rain garden is located next to the welfare unit. Any exceedance flooding from the rain garden will flow towards the northern boundary of the development and away from the shop unit, as shown by the proposed site levels on Stantec drawing 49868/2001/161.

7.3.34 Table 7-5 summarises the freeboard within the proposed infiltration basin.

Table 7-5: Summary of Freeboard for the 1% AEP Storm Event (Including +45% Climate Change Allowance).

Max. Water Level (m AOD)	Top of Bank Level (m AOD)	Infiltration Basin Freeboard (mm)	Freeboard to Welfare Unit (mm)	Freeboard to Shop Unit (mm)
88.808	89.200	392	1767	1555

Comparison to Greenfield Rates and Volumes

7.3.35 The greenfield runoff rates have been calculated for the site using the FEH methodology (Appendix F). Note: the site area is rounded up to 0.4ha in the calculations. The calculated runoff rates are presented in Table 7-6 below alongside the design discharge rates for the proposed drainage design.

Annual Exceedance Probability	Greenfield Runoff	Max. Design Discharge Rate (I/s)			
Event	Rate (I/s)	Infiltration Swale	Infiltration Basin	Rain Garden	Total
50%	0.2	3.3	3.5	0.2	7.0
3.3%*	0.4	6.0	5.9	0.2	12.1
1%*	0.6	7.1	7.3	0.2	14.6

Table 7-6: Greenfield Runoff Rates and Comparison.

*Design rates include allowances for climate change of 40% (3.3% AEP) and 45% (1% AEP).

7.3.36 The greenfield runoff volumes have been calculated for the site using the FEH methodology (Table 7-7). Note: the site Area is rounded up to 0.37ha for the greenfield volume calculation.

Annual Exceedance Probability	Greenfield Runoff Volume		Design Discl	harge Volume (r	n³)
Event	(m³)	Infiltration Swale	Infiltration Basin	Rain Garden	Total
50%	-	16.2	38.6	0.3	55.1
3.3%*	5	50.0	68.4	1.0	119.4
1%*	14	66.4	122.6	1.4	190.4

Table 7-7: Greenfield Runoff Volumes and Comparison.

*Design volumes include allowances for climate change of 40% (3.3% AEP) and 45% (1% AEP).

7.4 Water Quality

- 7.4.1 In May 2013, Mott MacDonald prepared the Drainage Feasibility Study and Risk Assessment report for the existing Household Waste Recycling Centre to report on the pollution risk from the waste recycling centre and propose pollution mitigation measures for the surface water drainage network (Section 2.5).
- 7.4.2 In July 2023, Stantec UK produced the Hydrogeological Risk Assessment (HRA) report to aid with the application for discharge to ground consent for the proposed site. The assessment modelled the expected pollutants from the proposed service yard and determined that the potential risks to groundwater are acceptable under the requirement of the environmental permit application.
- 7.4.3 To further assess pollution risk from the development, the Simple Index Approach has been undertaken in accordance with the 'SuDS Manual' (CIRIA C753, 2015). This section outlines the Simple Index Approach calculation to assess the pollution hazard level for total suspended solids (TSS), heavy metals and hydrocarbons.

Pollution Hazard

7.4.4 The Pollution Hazard level has been assessed for both catchments (from 'Very Low' to 'High'), based on the descriptions provided in Table 26.2 of the 'SuDS Manual' (see Table 7-8 below).

Treatment Train 1 – Service Yard Catchment

- 7.4.5 Runoff from the service yard is likely to have a 'High' risk of pollution due to the frequent movement and storage of household waste material, and frequent movement of heavy goods vehicles in this area. Possible surface water pollution could come from the following sources.
 - Frequent operation of heavy goods vehicles, due to exhaust products; wear and corrosion; and leaks or spillages of fuel or oil.
 - Leaks and spillages from waste storage containers due to overfilling, movement of containers, and wear & tear of the containers.
 - Animal faeces from wild animals and the disposal of pet bedding (vegetarian animals).
 - Litter from site users.
- 7.4.6 The Pollution Hazard Level for Treatment Train 1 will be 'High'.

Treatment Train 2 – Access Road Catchment

- 7.4.7 The runoff from the proposed customer access road and car parking is likely to have a 'Low' risk of pollution. Possible sources of pollution in these areas include the following.
 - Customer vehicles, due to exhaust products; wear and corrosion; and leaks or spillages of fuel or oil. Average daily traffic movements are predicted to be less than 300 movements per day and, therefore, the 'Low' risk criteria will apply as per Table 26.2 in the SuDS Manual (see Table 7-8 below).
 - Faeces from wild animals.
 - Litter from site users.
 - Spillage of household waste in the car parking area as customers remove waste items from their cars.
- 7.4.8 The Pollution Hazard Level for Treatment Train 2 will be 'Low'. However, acknowledging that customers may occasionally spill household waste within the Access Road Catchment, the 'medium' Pollution Hazard Level will also be considered.
- 7.4.9 The Pollution Hazard Indices corresponding to the Pollution Hazard Level will be used for the Simple Index Approach calculation (Table 7-8).

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways ¹	Medium	0.7	0.6	0.7
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways ¹	High	0.8 ²	0.8²	0.9²

Pollution Mitigation

7.4.10 Pollution mitigation has been assessed using the Pollution Mitigation Indices stated in Table 26.4 in the 'SuDS' Manual and information from product suppliers (Appendix I). As the management systems are used in sequence, a factor 0.5 is used to account for the reduced performance of secondary or tertiary components associated with already reduced inflow concentrations (Equation 1).

Equation 1: Total SuDS mitigation index = mitigation index₁ + 0.5 (mitigation index₂) + 0.5 (mitigation index₃)

Treatment Train 1 – Service Yard Catchment

7.4.11 The treatment train for the Service Yard Catchment consists of the V-Septor Hydrodynamic Separator by ACO (paragraph 7.4.12) and the bio-retention soil filtration layer in the infiltration basin (paragraph 7.4.13). Table 7-9 shows the pollution mitigation calculation in accordance with the Simple Index approach to demonstrate that sufficient mitigation measures have been proposed.

- 7.4.12 Catch pit CP5 is to be fitted with the V-Septor Hydrodynamic Separator by ACO, a proprietary water treatment system, to remove some pollutants before the runoff enters the infiltration basin. The V-Septor allows suspended solids to settle down into an internal chamber and can capture light liquids and debris at the surface of the water.
- 7.4.13 The surface of the infiltration basin includes a layer of bio-retention soil, with a minimum depth of 400mm, to provide additional treatment as water percolated through the soil in the basin. The surface of the bio-retention soil is to be vegetated.
- 7.4.14 Surface water runoff from the service yard will be drained by a series of gullies. Although gully sumps will capture some pollutants, they are not considered in the Simple Index calculation and, therefore, provide additional treatment beyond that demonstrated by the Simple Index approach.
- 7.4.15 Catch Pit CP S4 is fitted with a penstock valve which is to be left open during normal operation of the site. In the event of firefighting or significant pollution occurring on site, the penstock valve will be closed to prevent highly polluted runoff from entering the infiltration basin. The runoff will be collected in the fire tank underlying the service yard and then be disposed of appropriately following the fire / pollution event.
- 7.4.16 Sampling points are to be installed at strategic locations within the infiltration basin so that the quality of treated surface water runoff can be monitored during the operation of the waste recycling centre.

Management Component	Information Source	Pollution Mitigation Indices		
(in Sequence)	mornauon source	TSS	Metals	Hydrocarbons
Hydrocarbon and contaminant filter system	ACO V-Septor Hydrodynamic Separator	0.5	0.4	0.5
Bioretention Soil	CIRIA C753, Table 26.4 (300mm min soil with good contaminant attenuation potential)	0.8	0.8	0.8
Total Mitigation Indices (as per Equation 1)		0.9	0.8	0.9
Pollution Hazard Indices ('High')		0.8	0.8	0.9
Pollution Mitigation Index ≥ Pollution Hazard Index		Yes	Yes	Yes

Table 7-9: Pollution Mitigation Indices – Treatment Train 1 - Service Yard Catchment

Treatment Train 2 – Access Road Catchment

7.4.17 Runoff from the customer access road and associated parking will be drained via dropped kerb drainage inlets along the length of the access road into the infiltration swale. The infiltration swale includes a layer of bio-retention soil to remove pollutants as the surface water runoff percolates into the underlying natural soils. The Simple Index Approach calculation in Table 7-10 demonstrates that sufficient treatment is provided in the infiltration swale.

Management	Information Ocume	Pollution Mitigation Indices		
Component (In Sequence)	Information Source	TSS	Metals	Hydrocarbons
Infiltration Swale	CIRIA C753, Table 26.4 A layer of dense vegetation underlain by a soil with good contaminant attenuation potential of at least 300mm in depth	0.8	0.8	0.8
Total Mitiga	Total Mitigation Indices (as per Equation 1)		0.8	0.8
Polluti	Pollution Hazard Indices ('Low')		0.4	0.4
Pollution Hazard Indices ('Medium')		0.7	0.6	0.7
Pollution Mitigation Index ≥ Pollution Hazard Index		Yes	Yes	Yes

Table 7-10: Pollution Mitigation Indices – Treatment Train 2 - Access Road Catchment.

7.5 Maintenance

- 7.5.1 The whole site will be managed throughout the operational phase under an environmental permit. As such, measures will be in place to remove litter across the site and mitigate the risk of pollution spillage. This section outlines the maintenance requirements regarding the proposed drainage features.
- 7.5.2 The following maintenance should be programmed and undertaken for all parts of the drainage infrastructure.

ACO V-Septor Hydrodynamic Separator (ACO)

- 7.5.3 To ensure the reliable functioning of separators and ongoing environmental protection, the separator requires regular maintenance and servicing. This will be undertaken by Norfolk County Council or a specialist contractor procured by Norfolk County Council.
- 7.5.4 The unit should be inspected every 6 months, and the oil and floatable chamber and sludge trap emptied every 6 months to 3 years depending on pollution load.
- 7.5.5 Following the first two years of operation, the maintenance requirements for the ACO product should be reviewed and amended as required (i.e., maintenance periods can vary depending on pollutant load).
- 7.5.6 The ACO V-Septor Chamber is a Confined Space. It is not necessary to enter for routine maintenance. The flow breaker floor can be lifted using the lifting wire supplied (which should be extended according to the overall chamber depth. Local regulations must be fully observed in the event of planned or unplanned entry. If in doubt, consult with a professional Engineer or other competent person who can advise.

Gullies, Catch Pits and Pipework

7.5.7 The gully grates and sumps should be inspected weekly or as required. The gratings should be cleared of all material that is blocking the flow of surface water. If the gully sumps look like they are becoming full, they should be emptied using suitable sump cleaning equipment and waste material from the sumps should be disposed of offsite to an approved site.

7.5.8 The maintenance of this network will be carried out on a yearly basis, or as deemed necessary. It will be undertaken by the site operator who is responsible for running the site.

Spent Fire Water

7.5.9 Additionally, a penstock valve has been proposed for the discharge point into the network (Stantec drawing 49868/2001/501 in Appendix B). In the case of firefighting activity, or a major pollution spill event, the penstock valve will be closed to prevent polluted water entering the infiltration basin. The penstock valve is to be closed when / if safe to do so prior to extinguishing fires. A specialist contractor will collect the residual firefighting water on the site prior to reopening the penstock valves, and discharge appropriately.

Infiltration Swale and Infiltration Basin

- 7.5.10 Maintenance of the swale and basin features will be as per the schedules in Table 7-11 and Table 7-12.
- 7.5.11 As discussed in Section 7.3, the swale and basin both have gradients steeper than the typical steepest gradient of 1 in 3. Access to the basin for maintenance is provided at the northern end of the basin, which has been designed with a 1:3 gradient.
- 7.5.12 The swale is 400mm deep and, therefore, deemed shallow enough for ingress / egress.
- 7.5.13 Maintenance of the proposed SuDS will be carried out by Norfolk County Council or the maintenance contractor appointed by Norfolk County Council.

Opera	ation and Maintenance Requirements for Infiltr	ation Swale	
Maintenance schedule	Required action	Typical frequency	
	Remove litter and debris	Daily	
	Cut grass – to retain grass height within specified design range	Every 5 weeks	
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required	
	Inspect inlets, outlets and overflows for blockages and clear if required	Weekly	
Regular maintenance	Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas where water is ponding for >48 hours	Monthly, or when required	
	Inspect vegetation coverage	Inspection every 5 weeks, re- planting as required and during planting season.	
	Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies	Half yearly	
Occasional maintenance	Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required As required or if exposed over 10% the swale treatment		

Table 7-11: Infiltration Swale Maintenance Schedule

Operation and Maintenance Requirements for Infiltration Swale			
Maintenance schedule Required action		Typical frequency	
Remedial actions	Repair erosion or other damage by re-turfing or re- seeding	As required	
	Relevel uneven surfaces and reinstate design levels	As required	
	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	As required once erosion matting has biodegraded.	
	Remove build-up of sediment on inlet structures.	As required	
	Remove and dispose of oils or petrol residues using safe standard practices	As required. Spill procedures in places across site. SuDS management for oil / petrol as additional management procedure.	

Table 7-12: Infiltration Basin Maintenance Schedule

Operation and Maintenance Requirements for Bioretention			
Maintenance schedule	Required action Typical frequency		
	Inspect infiltration surfaces for silting and ponding, record de-watering time of the facility and assess standing water levels in underdrain (if appropriate) to determine if maintenance is necessary.	Every 6 months	
Regular inspections	Check operation of underdrains by inspection of flows after rain	Annually	
	Assess plants for disease infection, poor growth, invasive species etc and replace as necessary during growing season.	Assessment of plants every 5 weeks. Replacement during growing season, as required.	
	Inspect inlets and outlets for blockages	Weekly	
	Remove litter and surface debris (daily), and weeds (every 5 weeks)	As stated, to left.	
Regular maintenance	Replace plants to maintain planting density	During planting season	
	Remove sediment, litter and debris build-up from around inlets or from forebays	As required	
Occasional maintenance	Infill any holes or scour in the filter medium, improve erosion protection if required	During first year of operation, as required.	

Operation and Maintenance Requirements for Bioretention				
Maintenance schedule Required action Typical frequency				
	Repair minor accumulations of silt by raking away surface mulch, scarifying surface of medium and replacing mulch	As required, following biodegradation of erosion matting.		
Remedial actions	Remove and replace filter medium and vegetation above	As required but likely to be >20 years		

7.6 Foul Water Drainage Strategy

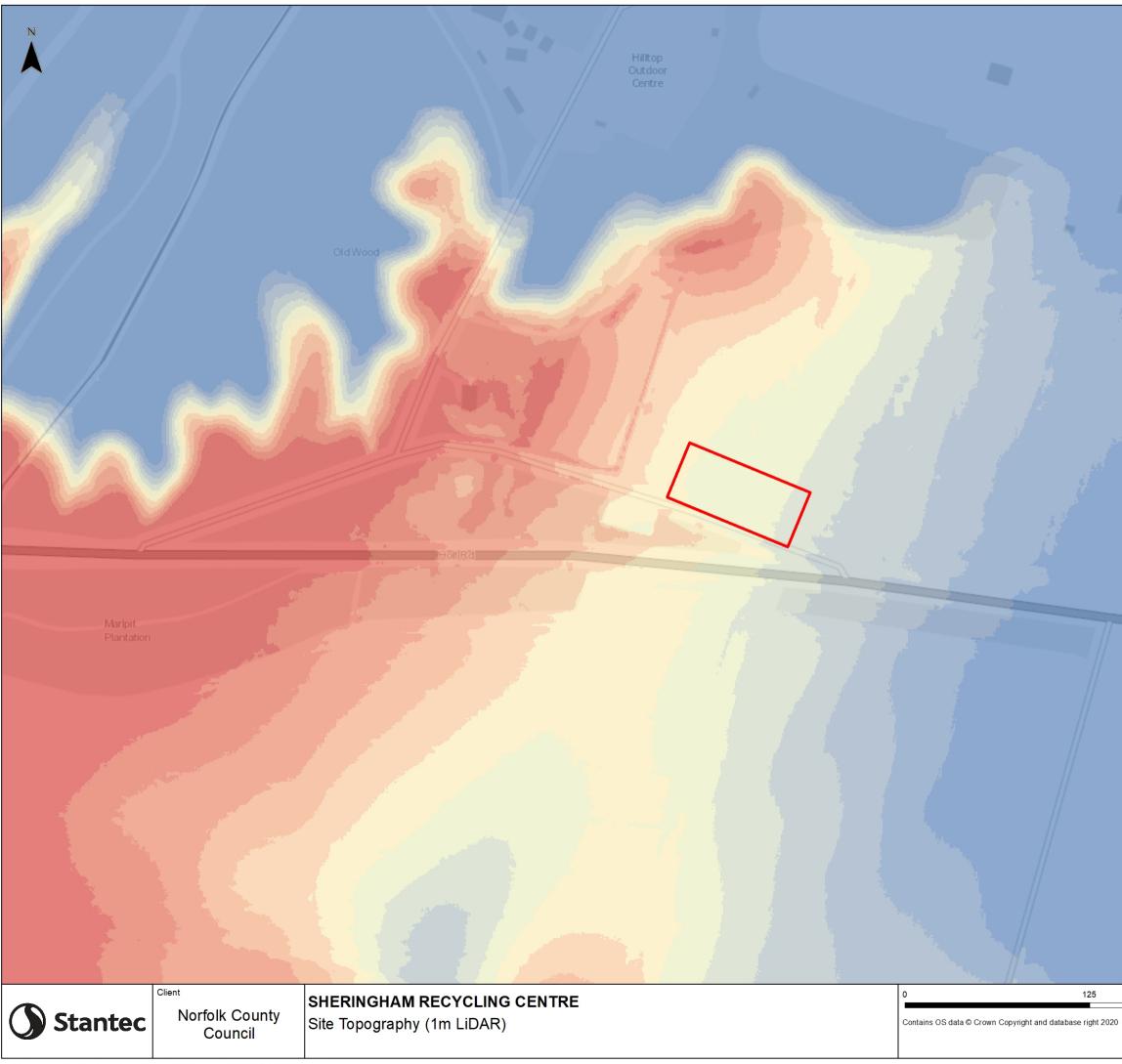
- 7.6.1 A foul water drainage network has been proposed to serve the two proposed buildings for the waste recycling facility. The proposed Welfare unit is to include 1no. kitchen sink, 1no. bathroom sink and 1no. WC connection, and the proposed Re-Use Shop and Storage Space unit is to include 1no. potential sink connection.
- 7.6.2 The proposed foul network will convey effluent to the proposed cesspool located in front of the proposed Storage Space building. The cesspool is easily accessible for HGVs via the main access route, allowing the cesspool to be maintained and emptied at regular intervals or as required.
- 7.6.3 This strategy has been taken as there are no nearby foul sewers to which the site can discharge, as shown on existing Anglian Water sewer records (Appendix C).
- 7.6.4 For the proposed foul drainage layout, refer to Stantec drawing 49868/2001/501 (Appendix B).

8 Residual Risk

- 8.1.1 The proposed drainage design has been modelled and designed for no flooding in the 100-year (plus 45% for climate change) rainfall event. In the event of rainfall event greater that the 100-year (plus 45% for climate change) rainfall event, flood water is to be directed away from site buildings and car parking areas. Exceedance flood waters will flow towards the eastern end of the site into the infiltration basin; when the infiltration basin overflows, the exceedance flood waters will flow into the open field adjacent to the site. Proposed levels across the site will direct exceedance flows away from the access road adjacent to the southern site boundary.
- 8.1.2 Regular inspection and maintenance of any drainage systems should also be undertaken to further mitigate this residual risk.
- 8.1.3 A construction methodology and Construction Environmental Management Plan (CEMP) is to be provided and implemented prior to any construction being undertaken.
- 8.1.4 As such, the residual risk is considered to be acceptable for the lifetime of the development.

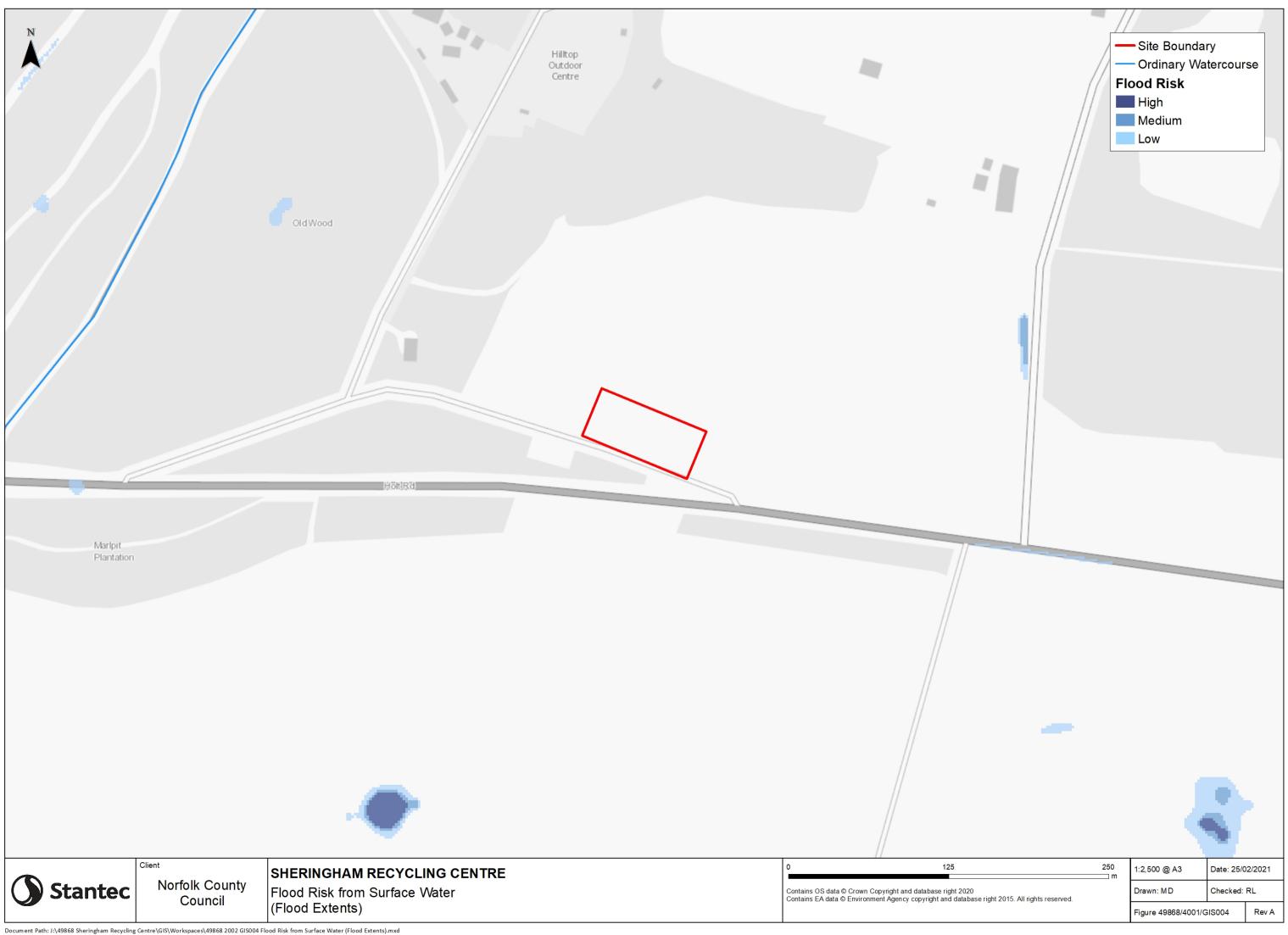
9 Conclusion

- 9.1.1 This Flood Risk Assessment (FRA) has been prepared by Stantec on behalf of our client, Norfolk County Council, to accompany a full planning application for a proposed Recycling Centre, on Holt Road in Sheringham. Norfolk.
- 9.1.2 This FRA concludes that:
 - The Environment Agency's Flood Map for Planning confirms the existing site is located within Flood Zone 1
 - The proposed agricultural development is classified as 'less vulnerable' development and will be located wholly within Flood Zone 1
 - The surface water drainage proposals for the site are detailed in the separate 'Drainage Strategy Report' (Stantec, February 2021) but based on on-site attenuation and infiltration within the site boundary
- 9.1.3 In conclusion, the future occupants and users of the operational site will be safe from flooding and there will be no detrimental impact on third parties. The proposal complies with the National Planning Policy Framework (NPPF) and local planning policy with respect to flood risk and is an appropriate development at this location.
- 9.1.4 In summary, the proposed surface water treatment systems have been assessed using the Simple Index Approach, as per the 'SuDS Manual', specifically in response to comments from Norfolk Country Council, as Lead Local Flood Authority. The proposed surface water management systems provide adequate surface water treatment for the expected pollution hazards for the proposed development based on the Simple Index Approach. In line with Table 4.3 of the SuDS Manual (Minimum water quality management requirements for discharge to receiving surface waters and groundwater) a detailed Risk Assessment and Groundwater Activity Permit will be submitted to the Environment Agency as the Environmental Regulator and should be referred to alongside this report.



Appendix A Location Plans & Flood Risk Maps

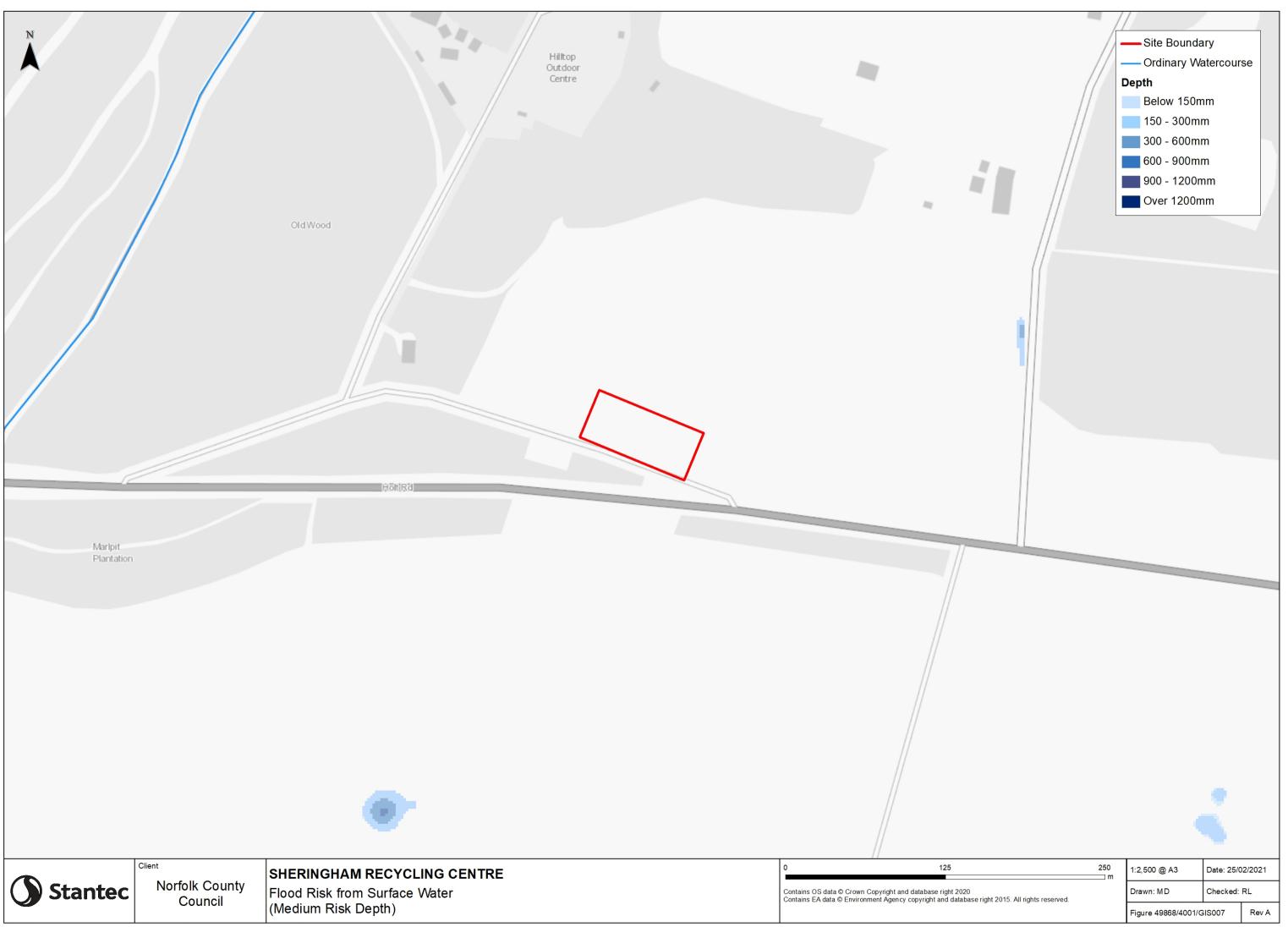
N		Hilltop Outdoor Centre	
		A148 (Holt Road)	
		して して して に の して い の に い し の し い の い し い い い い い い い い い い い い い	
Marlpit Plantation			
			//
		SHERINGHAM RECYCLING CENTRE	0 125
Stantec	Norfolk County Council	Site Location	Contains OS data © Crown Copyright and database right 2020



Site Boundary	
Elevation (m AOD)	
≤ 85	
85.001 - 86	
86.001 - 87	
87.001 - 88	
88.001 - 89	
89.001 - 90	
90.001 - 91	
91.001 - 92	
92.001 - 93	
93.001 - 94	
94.001 - 95	
> 95	

250 m	1:2,500 @ A3	Date: 25/0	2/2021
)	Drawn: MD	Checked:	RL
	Figure 49868/4001/G	SIS002	Rev A

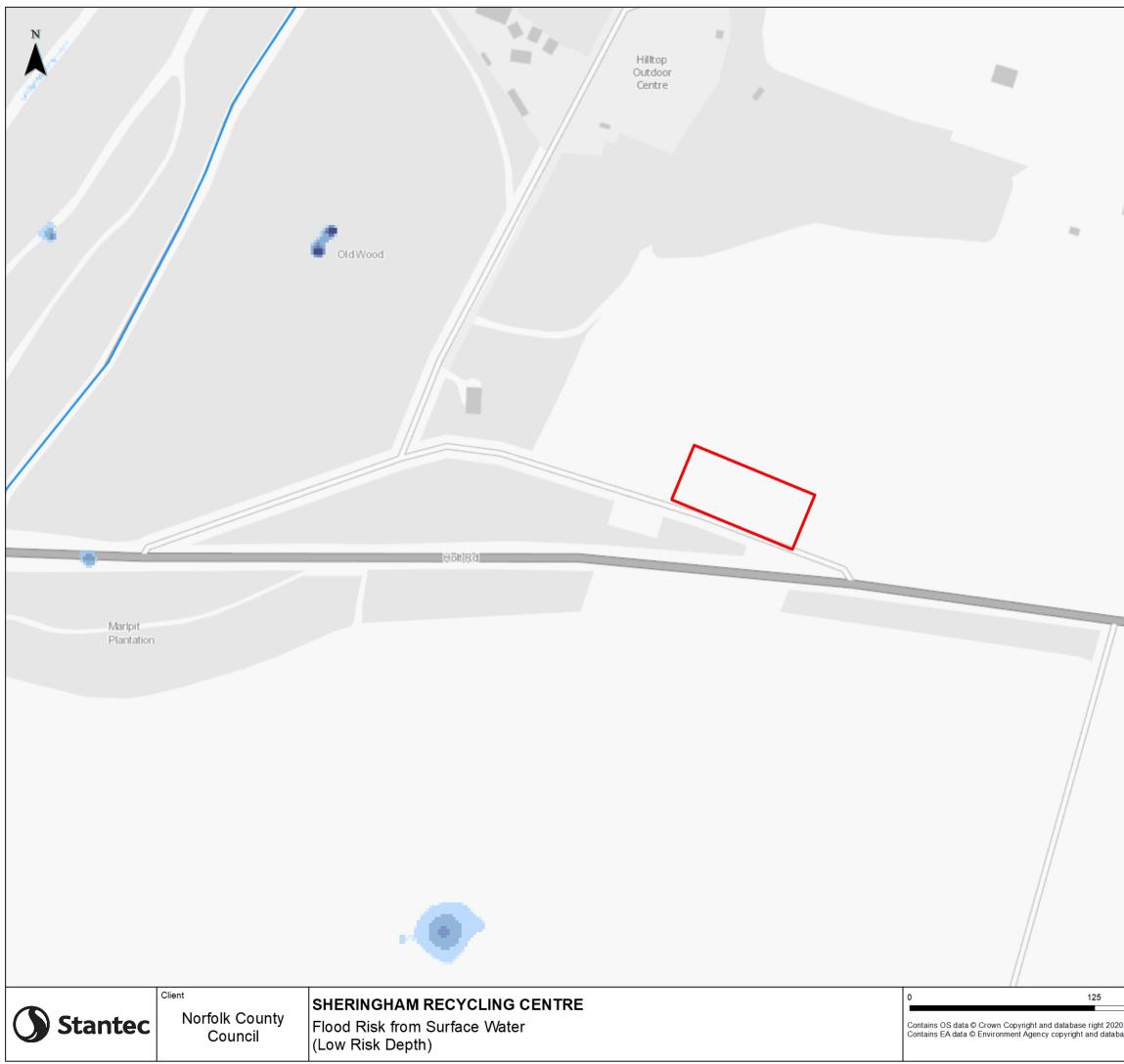
N	OldWood	
Maripit Plantation	SHERINGHAM RECYCLING CENTRE	
	Environment Agency Flood Zones for Planning	Contains OS data © Crown Copyright and database right 2020 Contains EA data © Environment Agency copyright and databa



Document Path: J:\49868 Sheringham Recycling Centre\GIS\Workspaces\49868 2002 GIS005 Flood Risk from Surface Water (High Risk Depth).mxd

De	Site Boundar Ordinary Wa pth Below 150m 150 - 300m 300 - 600m 600 - 900m 900 - 1200m	tercourse m n n n n m
250 m 20 base right 2015. All rights reserved.	1:2,500 @ A3 Drawn: MD Figure 49868/4001/G	Date: 25/02/2021 Checked: RL SIS005 Rev A

N	Old Wood	Ve	Site Boundary Ordinary Watercourse Jocity Less than 0.25 m/s 0.25 - 0.50 m/s 0.50 - 1.00 m/s 1.00 - 2.00 m/s Over 2.00 m/s
Maripit Plantation			1:2,500 @ A3 Date: 25/02/2021
Stantec Norfolk County Council	Flood Risk from Surface Water (High Risk Velocity)	m Contains OS data © Crown Copyright and database right 2020 Contains EA data © Environment Agency copyright and database right 2015. All rights reserved.	Drawn: MD Checked: RL Figure 49868/4001/GIS006 Rev A


Document Path: \\pba.int\cam\Projects\49868 Sheringham Recycling Centre\GIS\Workspaces\49868 2002 GIS006 Flood Risk from Surface Water (High Risk Velocity).mxd

Document Path: J:\49868 Sheringham Recycling Centre\GIS\Workspaces\49868 2002 GIS007 Flood Risk from Surface Water (Medium Risk Depth).mxd

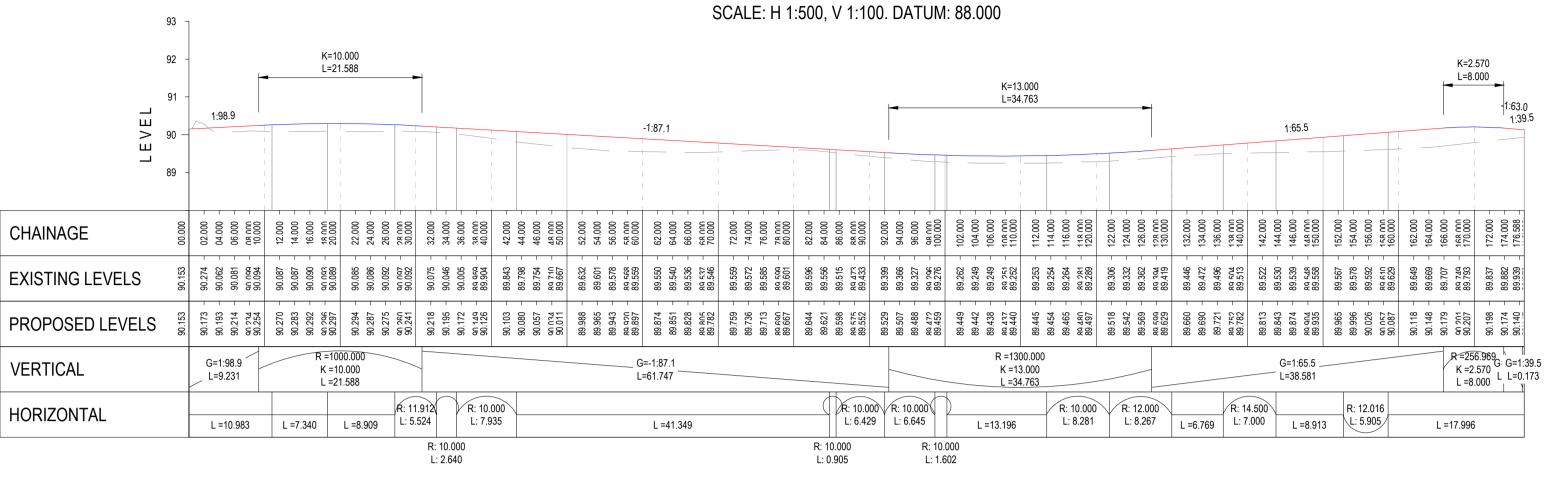
Cidwood Cidwood	 Site Boundar, Ordinary Wat City Less than 0.2 0.25 - 0.50 m 0.50 - 1.00 m 1.00 - 2.00 m Over 2.00 m/s 	ercourse 25 m/s /s /s
	1:2,500 @ A3	Cate: 25/02/2021
Norfolk County Council Norfolk County Council Shi Likitori All RECOVERING CENTRE Image: Shi Likitori All RECOVERING CENTRE Flood Risk from Surface Water (Medium Risk Velocity)	Drawn: MD Figure 49868/4001/GI	Checked: RL S008 Rev A

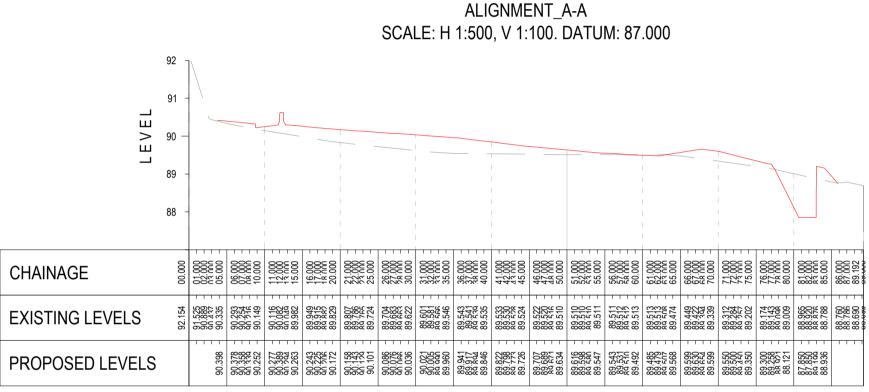
Document Path: \\pba.int\cam\Projects\49868 Sheringham Recycling Centre\GIS\Workspaces\49868 2002 GIS008 Flood Risk from Surface Water (Medium Risk Velocity).mxd

Document Path: J:\49868 Sheringham Recycling Centre\GIS\Workspaces\49868 2002 GIS009 Flood Risk from Surface Water (Low Risk Depth).mxd

//—	Site Boundar Ordinary Wa Poth Below 150m 300 - 600m 600 - 900m 900 - 1200m Over 1200m	tercours m า า ท	e
210	1:2,500 @ A3	Date: 25/02	/2021
m	I:2,500 @ A3		
20 base right 2015. All rights reserved.	Drawn: MD	Checked: R	L
	Figure 49868/4001/G	sIS009	Rev A
		· · ·	

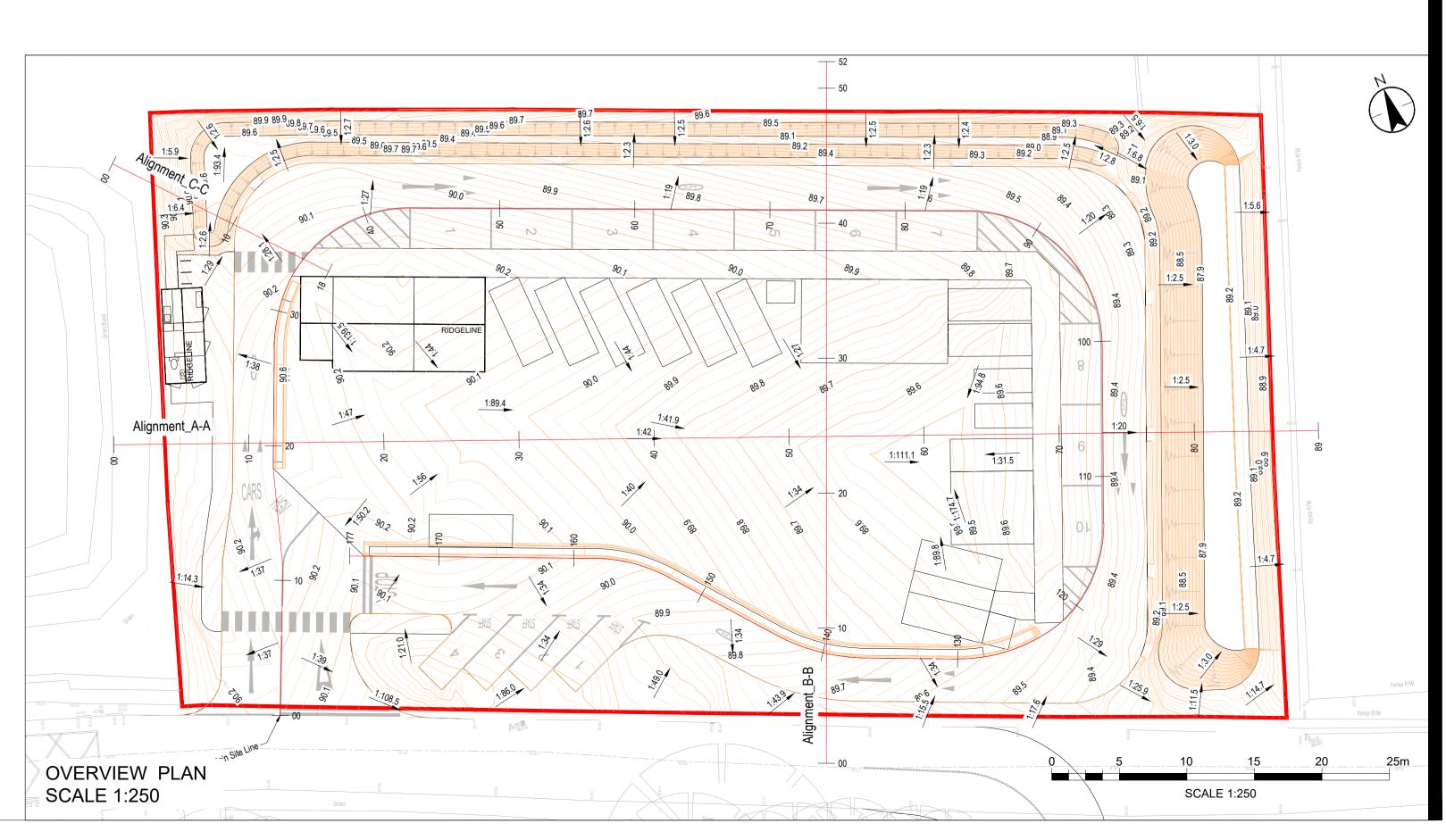
	Hiltop Outdoor Centre	
Narlpit Plantation	tions	Interpretended by the second seco


Document Path: \\pba.int\cam\Projects\49868 Sheringham Recycling Centre\GIS\Workspaces\49868 2002 GIS010 Flood Risk from Surface Water (Low Risk Velocity).mxd



N																								
																			 Site Bo 	oundary				
											Hiltop Outdoor							50		rotectio	n Zon	96		
<i>/</i> \																		50		IOLECHO				
																			Zone I			Inner Pro	tection Zon	e
																			Zone II	1			otection Zon	
																			Zone n	I				e
																		•	Zone II			Total Cat	chment	
																			7000 0	of Special	Intere			
																			Zone o	n Special	milere	51		
												-												
												\sim												
												/ >												
												/												
													/											
													/											
		Naripat																						
		T	Client		T	CHEDIN		DEOVO					 	 0			125				250	1:2,500 @ A3	Date: 25/02	/2021
			Norf		ntv	SHERIN															m			
	Stan	ntec	NOL	folk Cou Council	iity	Source F	Protecti	on Zone	s					Contains O	S data © Crow	n Copyright and	I database right	2020 atabase right 201			ſ	Drawn: MD	Checked: R	L
			(Council										Contains E/	A uata ⊌ ENVIr	omment Agency	copyright and da	aabase right 20'	IO. AII IIGNIS LE	eserved.	E.			Beu A
										 			 								F	igure 49868/40	J1/GIS014	Rev A
				kspaces\49868 2										 										

Appendix B Development Plans



ALIGNMENT_C-C SCALE: H 1:500, V 1:100. DATUM: 88.000

		92	
		91 -	
	EVEI	90 —	
	_	89 -	
CHAINAGE		000.00	02.000 04.000 06.000 112.000 14.000 112.000 14.000
EXISTING LEVEL	S	90.515	90.448 - 90.378 - 90.375 - 90.214 - 90.093 - 89.980 -
PROPOSED LEV	ELS		90.325 - 90.325 - 90.076 - 90.073 - 90.13 - 90.137 - 90.243 -
L			

ALIGNMENT MAIN SITE LINE

	92 -																						
	91 -																						
E A E	90 —		Ļ		八																		
	89 -											_								\bigvee	Γ		
				_													_						
CHAINAGE	00.00	02.000	04.000	000.90	10.000	12.000	14.000	16.000	18 000 20.000	22.000	24.000	26.000	28.000 30.000	32.000	34.000	36.000	38 000 40.000	42.000	44.000	46.000	48 000 50.000	51.963	
EXISTING LEVELS	89.751	- 607.68	89.775	89.511 -	89.515 -	89.517	89.513 -	89.510 -	89.503	89.507 -	89.510 -	89.513 -	89.538 89.538	89.553 -	89.558 -	89.561 -	89.568	89.580 -	89.579 -	89.590	89.607 -	89.617	
PROPOSED LEVELS	6	1	89.800	89.720	89.769	89.736	89.703 -	- 079.68	89.605 89.605	89.572 -	89.577 -	89.641 -	89.769 89.769	89.833 -	89.897	89.935 -	яа яя1 89.781	89.682 -	89.582 -	89.101	89.595 -		

ALIGNMENT_B-B

SCALE: H 1:500, V 1:100. DATUM: 88.000

Stantec UK Limited CAMBRIDGE

50/60 Station Road, Cambridge, CB1 2JH Tel: +44 1223 882 000 www.stantec.com/uk

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Notes

UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations.

- 1. All dimensions are in millimetres unless noted otherwise.
- 2. All levels are in metres relative to Ordnance Datum Newlyn unless noted otherwise.
- 3. All coordinates are in metres relative to Ordnance Survey National Grid.
- 4. The Contractor is to verify all dimensions on site before commencing work or preparing shop drawings.
- 5. This drawing is to be read in conjunction with all Engineers and Architects drawings and specifications.

P06 SITE LAYOUT UPDATED		DF	ТВ	2023.08.11
P05 BACKGROUND INFORMATION UPDATE	D	DF	ТВ	2023.02.02
P04 ISSUE STATUS AND DESIGN AMENDED		DF	TB	2023.01.09
P03 SITE LEVEL DESIGN AMENDED		DF	WW	2022.12.16
P02 LEVEL DESIGN AMENDED		DF	TB	2022.11.15
Issued/Revision		Ву	Appd	YYYY.MM.DD
	DF	RZ	TB	2022.10.04
	Dwn.	Dsgn.	Chkd.	YYYY.MM.DD

Issue Status

PLANNING APPROVAL

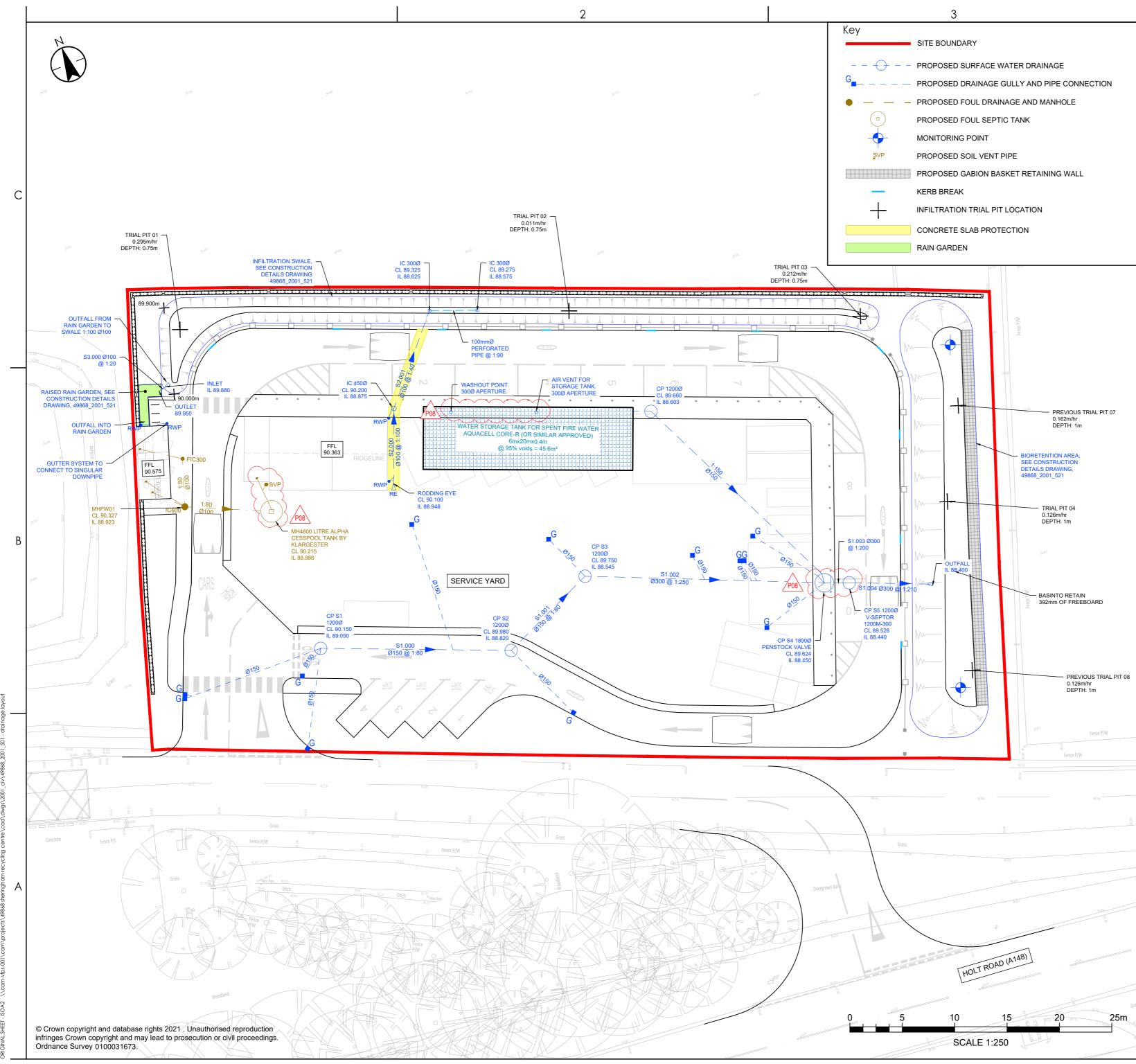
This document is suitable only for the purpose noted above. Use of this document for any other purpose is not permitted.

Client/Project Logo

Client/Project NORFOLK COUNTY COUNCIL

SHERINGHAM RECYCLING CENTRE

Title PROPOSED SITE SECTIONS


Project No.

Scale A1@1:500

Revision P06

49868

Drawing No.

Stantec UK Limited CAMBRIDGE 50/60 Station Road, Cambridge, CB1 2JH Tel: +44 1223 882 000 www.stantec.com/uk

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Notes

UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations.

- All dimensions are in millimetres unless noted otherwise.
- All levels are in metres relative to Ordnance Datum Newlyn unless noted otherwise.
- All coordinates are in metres relative to Ordnance Survey National Grid. 3.
- The Contractor is to verify all dimensions on site before commencing work or 4 preparing shop drawings.
- This drawing is to be read in conjunction with all Engineers and Architects drawings and specifications.

P08 UPDATES FOLLOWING COMMENTS		RO	SL	2023.09.21
Issued/Revision		Ву	Appd	YYYY.MM.DD
	DF	-	TB	2022.09.23
	Dwn.	Dsgn.	Chkd.	YYYY.MM.DD

Issue Status

PLANNING APPROVAL

This document is suitable only for the purpose noted above. Use of this document for any other purpose is not permitted.

Client/Project Logo

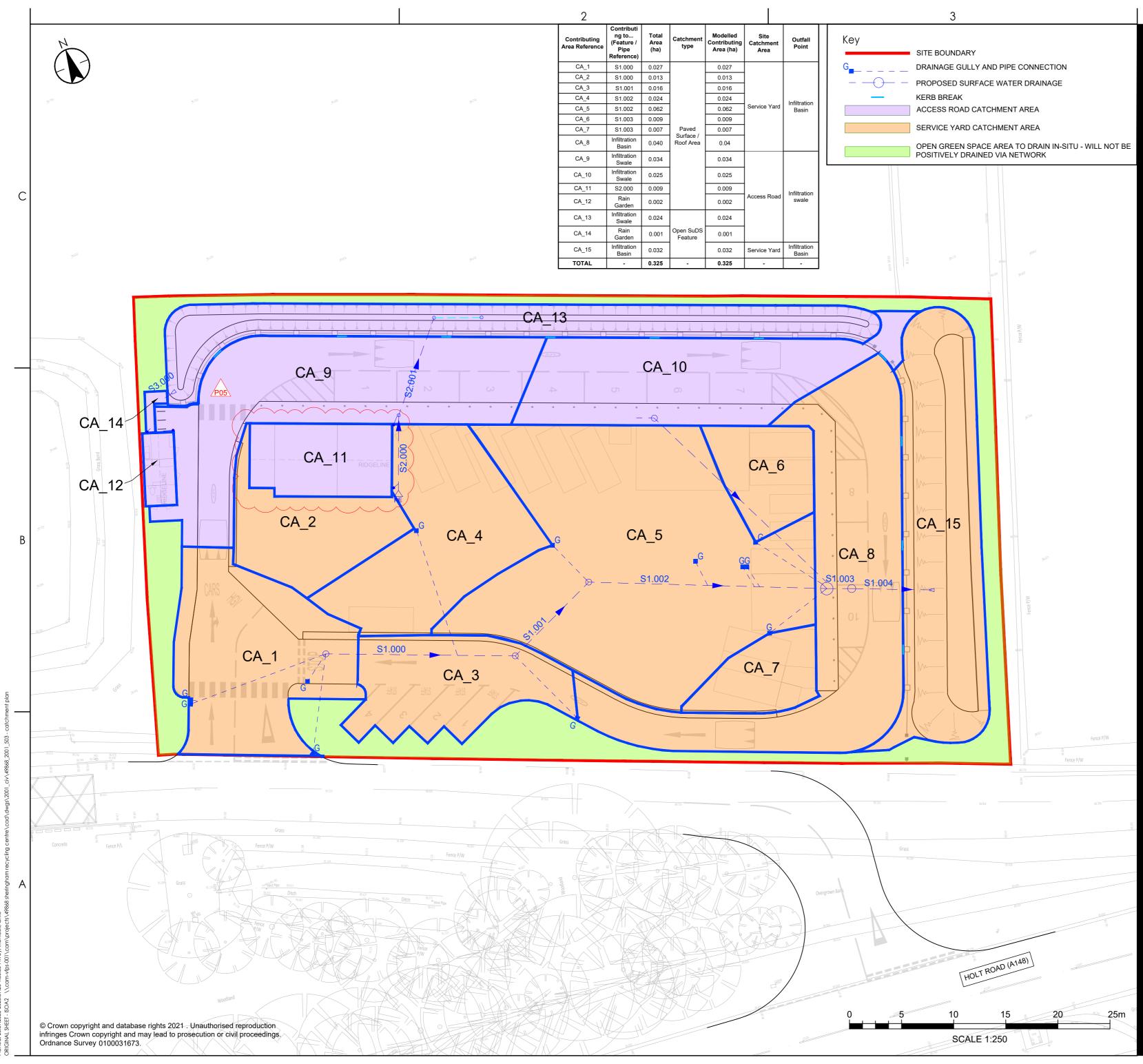
Norfolk County Council

Client/Project NORFOLK COUNTY COUNCIL

SHERINGHAM RECYCLING CENTRE

Title PROPOSED DRAINAGE LAYOUT

Project No. 49868


Revision

P08

Scale 1:250 @ A2

Drawing No.

49868/2001/501

Stantec UK Limited CAMBRIDGE 50/60 Station Road, Cambridge, CB1 2JH Tel: +44 1223 882 000 www.stantec.com/uk

Copyright Reserved

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay. The Copyrights to all designs and drawings are the property of Stantec. Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Notes

UTILITIES NOTE: The position of any existing public or private sewers, utility services, plant or apparatus shown on this drawing is believed to be correct, but no warranty to this is expressed or implied. Other such plant or apparatus may also be present but not shown. The Contractor is therefore advised to undertake their own investigation where the presence of any existing sewers, services, plant or apparatus may affect their operations.

- All dimensions are in millimetres unless noted otherwise.
- All levels are in metres relative to Ordnance Datum Newlyn unless noted otherwise.
- All coordinates are in metres relative to Ordnance Survey National Grid.
- The Contractor is to verify all dimensions on site before commencing work or preparing shop drawings.
- This drawing is to be read in conjunction with all Engineers and Architects drawings and specifications.

P05 CATCHMENT PLAN UPDATED		RO	SL	2023.09.21
Issued/Revision		Ву	Appd	YYYY.MM.DD
	DF	RZ	TB	2022.12.16
	Dwn.	Dsgn.	Chkd.	YYYY.MM.DD

Issue Status

PLANNING APPROVAL

This document is suitable only for the purpose noted above. Use of this document for any other purpose is not permitted.

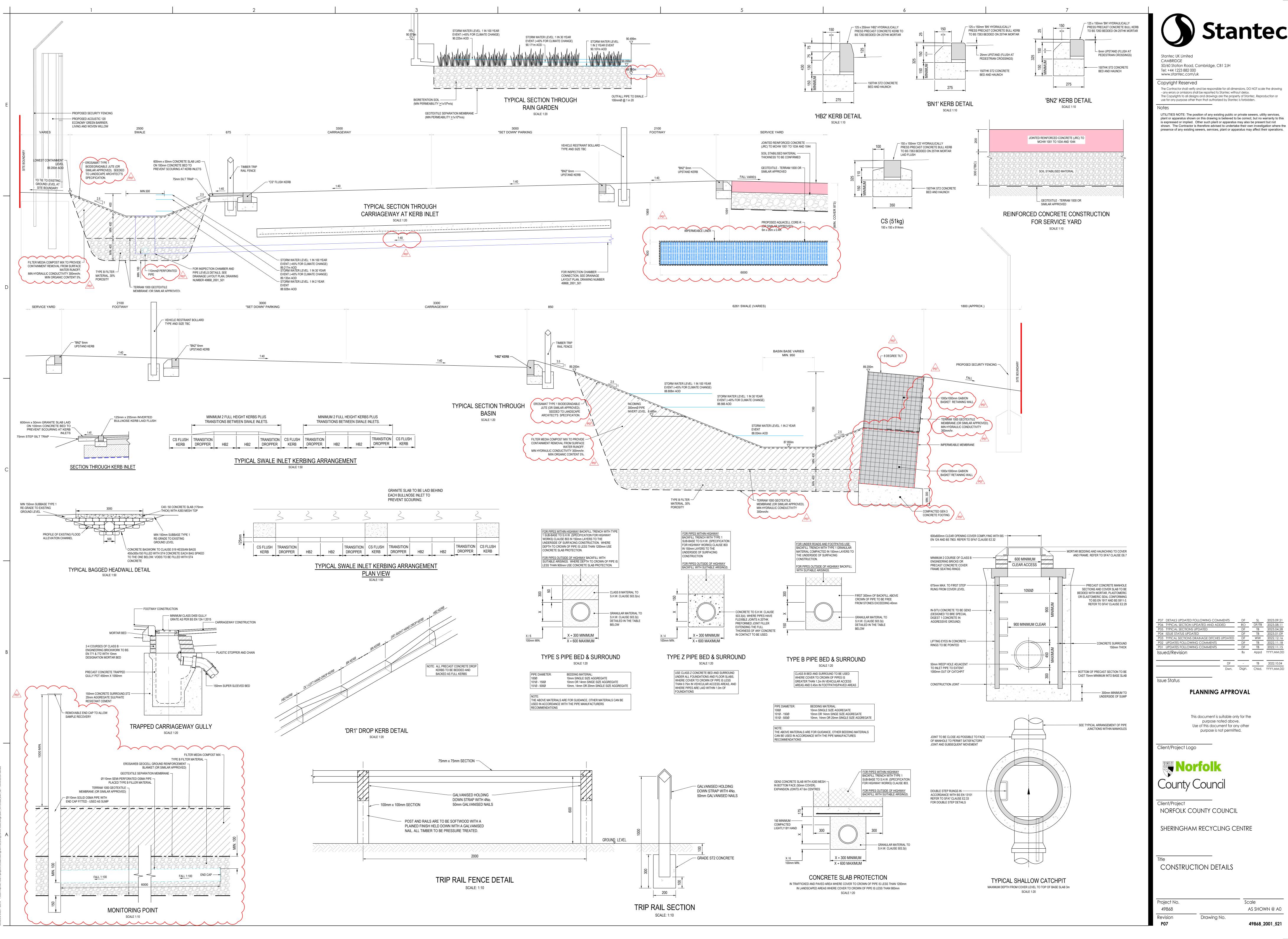
Client/Project Logo

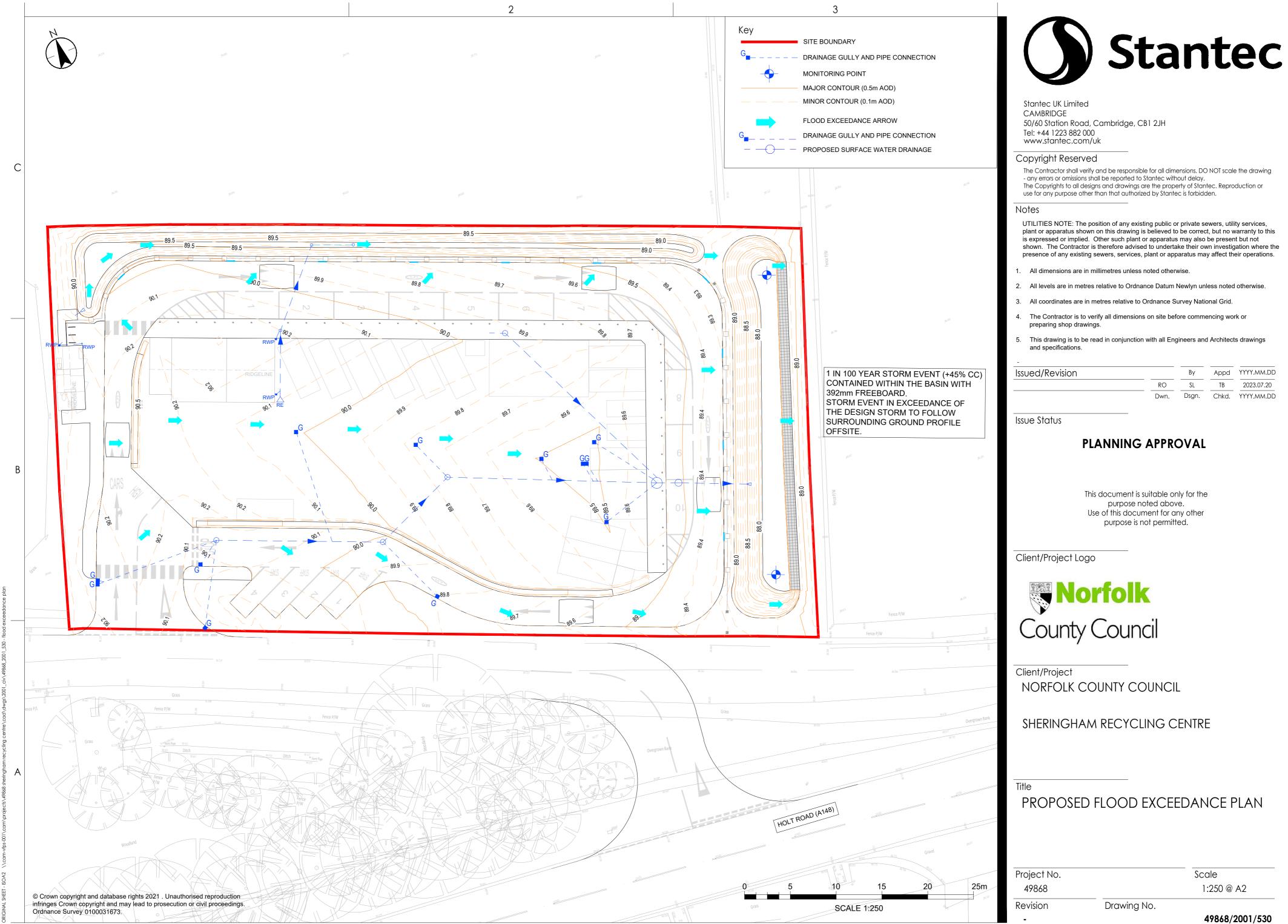
Norfolk County Council

Client/Project NORFOLK COUNTY COUNCIL

SHERINGHAM RECYCLING CENTRE

Title CATCHMENT PLAN


Project No. 49868


Revision

P05

Scale 1:250 @ A2

Drawing No.

49868/2001/530

Appendix C Anglian Water Plans

Laker, Richard

From:	Planning Liaison <planningliaison@anglianwater.co.uk></planningliaison@anglianwater.co.uk>
Sent:	25 February 2021 12:44
To:	Davison, Max
Cc:	Laker, Richard
Subject:	RE: Flood Risk Enquiry - Sheringham Recycling Centre
Follow Up Flag:	Follow up
Flag Status:	Flagged

Good afternoon Max

Thank you for your email regarding Holt Road south of Sheringham, Norfolk, NR26 8TW

Anglian Water is able to confirm that there have been instances of flooding within the vicinity of the proposed development. It is also possible that other flooding may have occurred that we do not have records of, other organisations such as the Local Lead Planning Authority, Local Planning Authorities Internal Drainage Board or the Environment Agency may have records. We recommend you submit a pre planning application form to enable Anglian Water to advise you of any suitable connection points for the proposed development and identify any mitigation that would be required. Further details including the application form can be found on our website https://www.anglianwater.co.uk/developing/planning--capacity/

Kind regards

Sandra

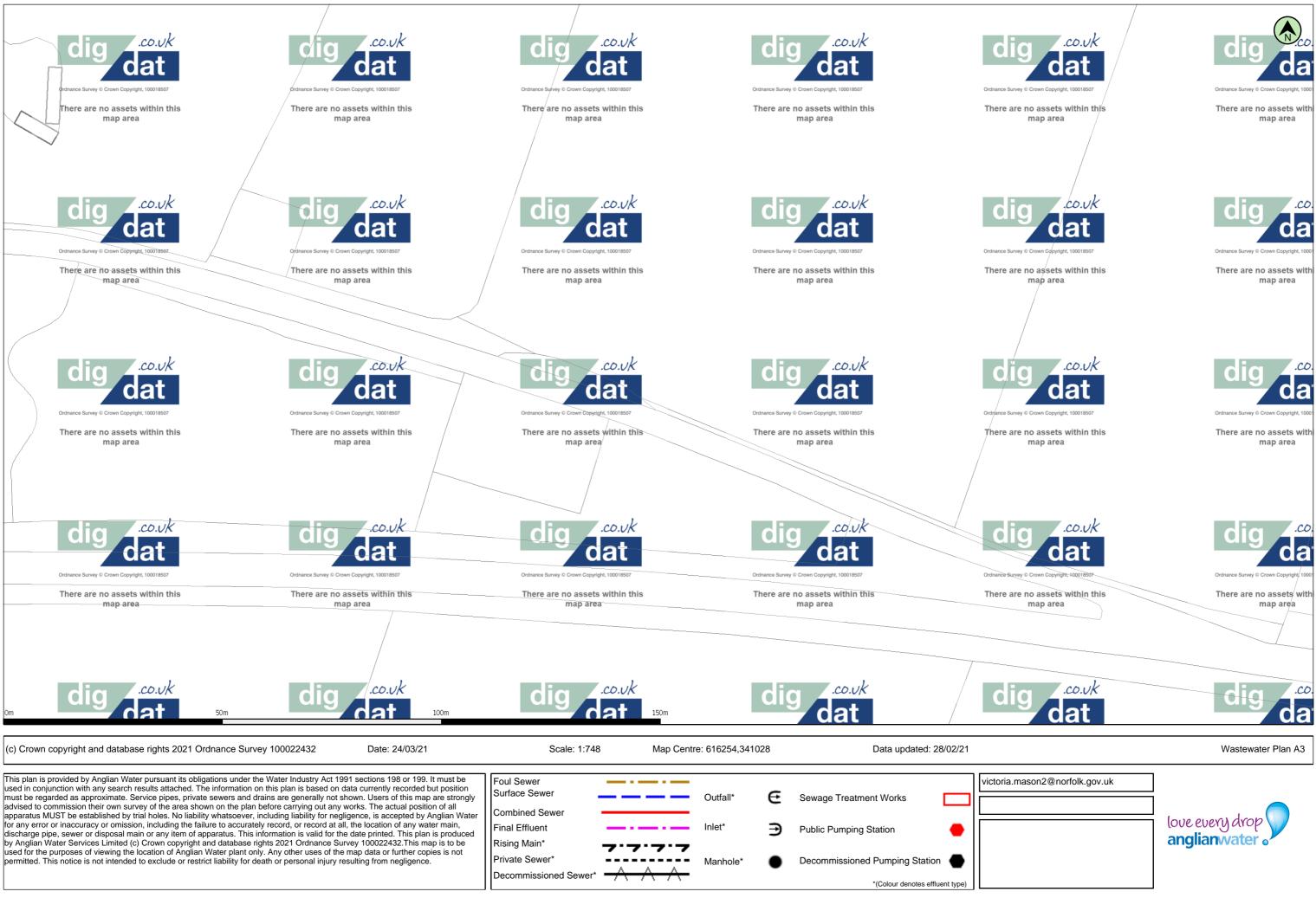
Sandra De Olim

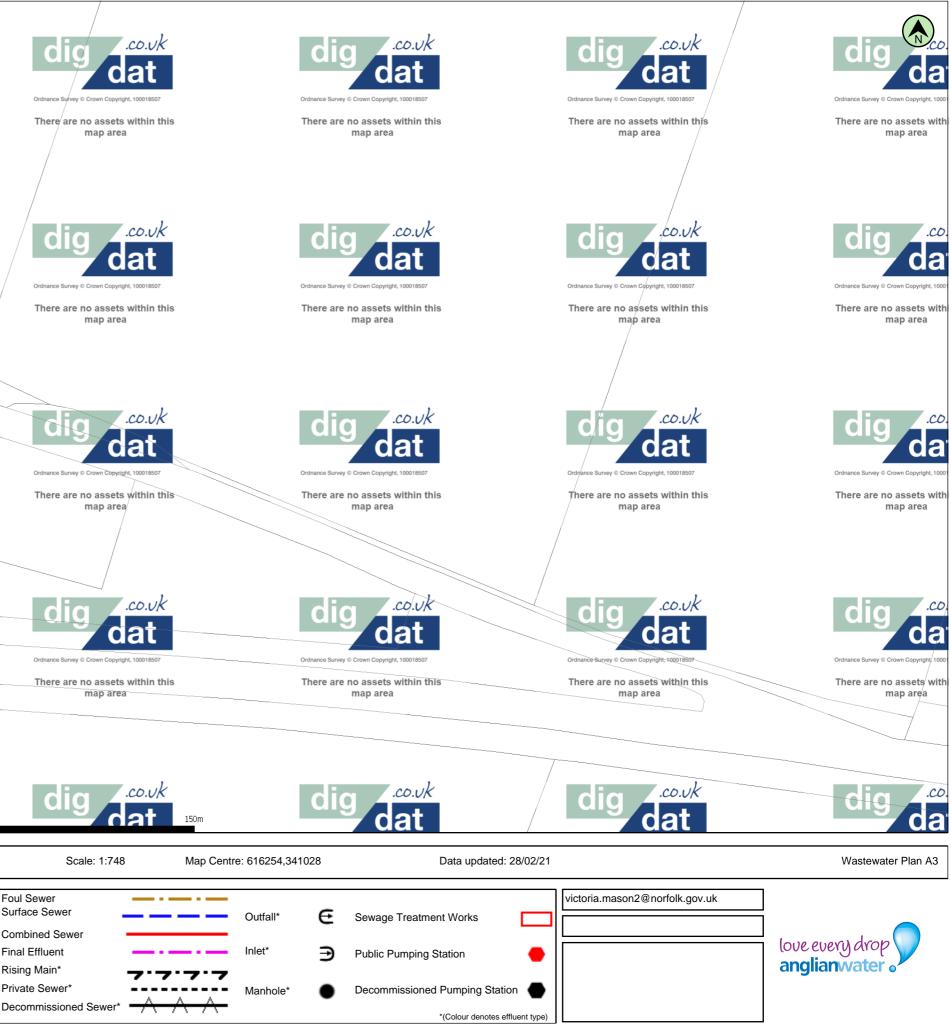
Planning & Capacity - Development Services Mobile: 07929804300 Telephone: 07929786955 Anglian Water Services Limited Thorpe Wood House, Thorpe Wood, Peterborough, Cambridgeshire, PE3 6WT

From: Davison, Max <Max.Davison@stantec.com>
Sent: 24 February 2021 15:07
To: Planning Liaison <planningliaison@anglianwater.co.uk>
Cc: Laker, Richard <Richard.Laker@stantec.com>
Subject: Flood Risk Enquiry - Sheringham Recycling Centre

EXTERNAL MAIL - Please be aware this mail is from an external sender - THINK BEFORE YOU CLICK

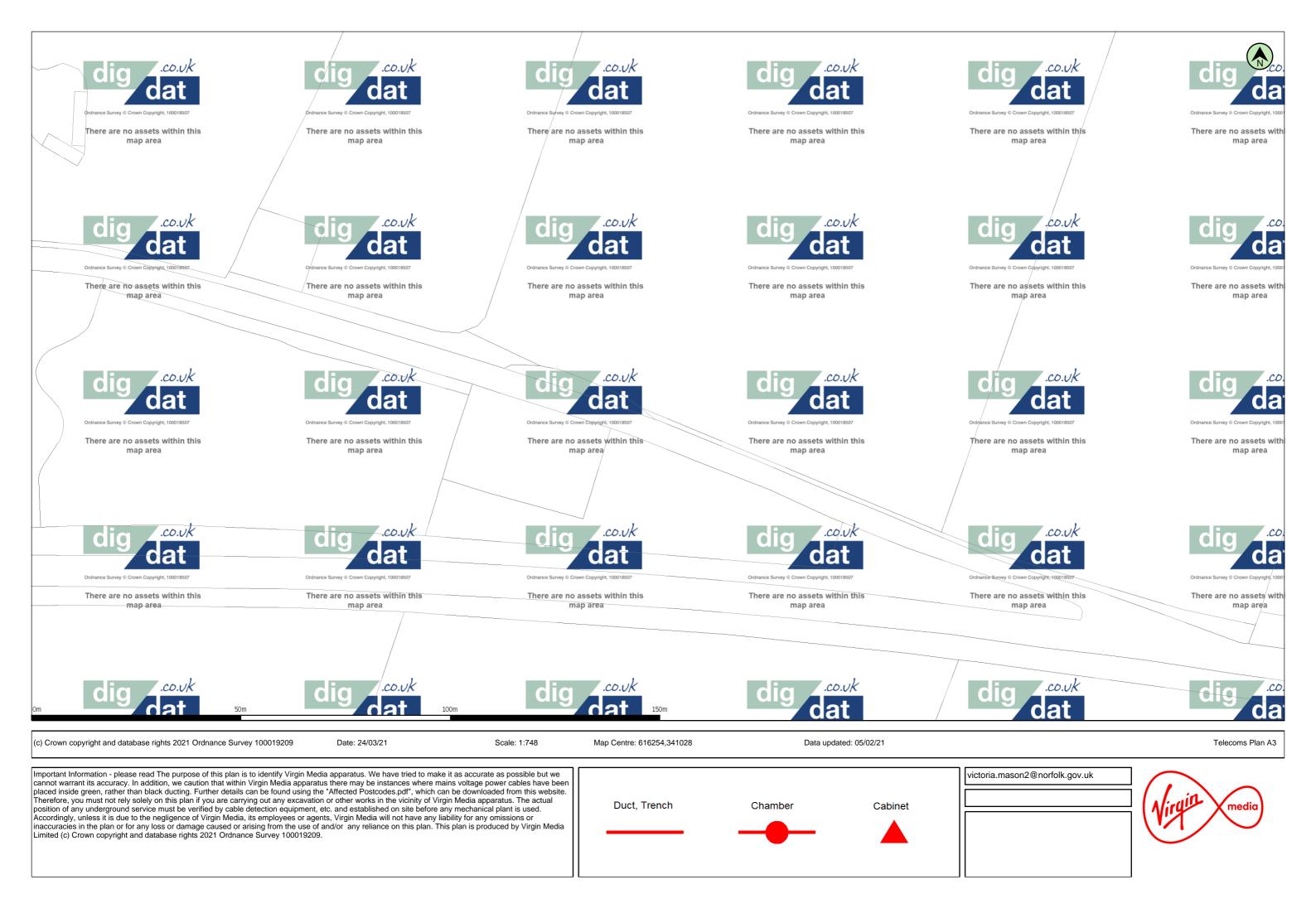
Dear Sir/Madam,


(c) Crown copyright and database rights 2021 Ordnance Survey 100022432 Date: 24/03/21 Scale: 1:748 Map Centre: 616254,341028 Data updated This plan is provided by Anglian Water pursuant its obligations under the Water Industry Act 1991 sections 198 or 199. It must be used in conjunction with any search results attached. The information on this plan is based on data currently recorded but position must be regarded as approximate. Service pipes, Map Centre: 616254,341028 Data updated	d: 28/02/21
Strem MDREPERO	


any search results attached. The information on this plan is based on data currently recorded but position must be regarded as approximate. Service pipes, private sewers and drains are generally not shown. Users of this map are strongly advised to commission their own survey of the area shown on the plan before carrying out any works. The actual position of all apparatus MUST be established by trial holes. No liability whatsoever, including liability for negligence, is accepted by Anglian Water for any error or inaccuracy or omission, including the failure to accurately record, or record at all, the location of any water main, discharge pipe, sewer or disposal main or any item of apparatus. This information is valid for the date printed. This plan is produced by Anglian Water Services Limited (c) Crown copyright and database rights 2021 Ordnance Survey 100022432. This map is to be used for the purposes of viewing the location of Anglian Water plant only. Any other uses of the map data or further copies is not permitted. This notice is not intended to exclude or restrict liability for death or personal injury resulting from negligence.

Potable Water		Fitting 🔀
Raw Water	RAW	
Decommissioned Water	$\rightarrow \rightarrow \rightarrow \rightarrow$	Hydrant 🦲

 \bowtie



Ianhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert	Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert	Manhole Reference	e Liq
											-
											-
											_
											_
											-
											_

_iquid T	уре	Cover Level	Invert Level	Depth to Invert

Appendix D Environment Agency Correspondence

Hartley, Michael

From:	Anglian Water <planningliaison@anglianwater.co.uk></planningliaison@anglianwater.co.uk>
Sent:	23 July 2019 10:50
То:	Hartley, Michael
Subject:	Holt Road, Sheringham, East Beckham Flood Risk Query Response

Michael Hartley,

Thank you for your Flood Risk Query you submitted for Holt Road, Sheringham, East Beckham.

Our response to this is: Anglian Water is able to confirm that we have no records of flooding in the vicinity that can be attributed to capacity limitations in the public sewerage system. It is possible that other flooding may have occurred that we do not have records of, other organisations such as the Local Authority, Internal Drainage Board or the Environment Agency may have records.

Should you have any questions relating to this please contact 0345 606 6087 Option 1. Your reference for this enquiry is 00031034.

Kind Regards Growth and Planning Services Team

Appendix E InfoDrainage Calculations

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:	•		
Гуре: Inflows	3rd Floor, Station F	load, Cambridge		
Storm Phase: Phase	CB1 2JH			

Type : Catchment Area

Type : Catchment Area

Area (ha)

0.027

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	1.000
Winter Volumetric Runoff	1.000
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Area (ha)

0.013

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	1.000
Winter Volumetric Runoff	1.000
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Sheringham Recycling Centre: Surface Water Drainage		ate: 1/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	De R(esigned by:	Checked by:	Approved By:	
Report Details: Type: Inflows Storm Dhase: Dhase	Sta 3r	antec UK Ltd: d Floor, Station Road, Can	nbridge	l	
Storm Phase: Phase CA_3		B1 2JH			Type : Catchment Area
Area (ha)		0.016			
Dynamic Sizing Runoff Method Time of Cond Summer Volumetric Runoff Winter Volumetric Runoff Time of Concentration (mins) Percentage Impervious (%)	centration 1.000 1.000 5 100				
CA_4 Area (ha)		0.024			Type : Catchment Area
Dynamic Sizing					

Runoff Method Summer Volumetric Runoff Winter Volumetric Runoff	Time of Concentration 1.000 1.000
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Sheringham Recycling Centre:		Date:			
Surface Water Drainage 1 in 2, 30 (+40% CC) and 100 (+45% CC) RP		11/08/2023 Designed by:	Checked by:	Approved By:	
Report Details:		RO Stantec UK Ltd:			
Type: Inflows		3rd Floor, Station R	oad, Cambridge		
Storm Phase: Phase		CB1 2JH			
					Type : Catchment Area
Area (ha)		0.062			
Dynamic Sizing					
	oncentration				
Summer Volumetric Runoff Winter Volumetric Runoff	1.000				
Time of Concentration (mins) Percentage Impervious (%)	5 100				
	100				
AT CA_6					Type : Catchment Area
Area (ha)		0.009			
		0.005			
Dynamic Sizing					
	oncentration				
Summer Volumetric Runoff Winter Volumetric Runoff	1.000				
Time of Concentration (mins)	5				
Percentage Impervious (%)	100				

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
Report Details: Type: Inflows Storm Phase: Phase	RO Stantec UK Ltd: 3rd Floor, Station F CB1 2JH	Road, Cambridge		
🦣 са_т				Type : Catchment Area
Area (ha)	0.007			

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	1.000
Winter Volumetric Runoff	1.000
Time of Concentration (mins)	5
Percentage Impervious (%)	100

-

Area (ha)

0.04

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	1.000
Winter Volumetric Runoff	1.000
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Type : Catchment Area

Sheringham Recycling Centre:	Date:			
Surface Water Drainage	11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Inflows	3rd Floor, Station	n Road, Cambridge		
Storm Phase: Phase	CB1 2JH			
ФД СА_9				Type : Catchment Area
Area (ha)	0.034			
	0.00+			
Dynamic Sizing				
Runoff Method Time of Concentration	ion			
Summer Volumetric Runoff 1.0				
Winter Volumetric Runoff 1.0				
Time of Concentration (mins)	5			
Percentage Impervious (%) 1	100			
GA_10				Type : Catchment Area
Area (ha)	0.025			
Dynamia Sizing				
Dynamic Sizing				
Runoff Method Time of Concentrat				
Summer Volumetric Runoff 1.0				
Winter Volumetric Runoff 1.0				
Time of Concentration (mins)	5			
Percentage Impervious (%) 1	100			

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023					
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:					
Report Details: Type: Inflows Storm Phase: Phase	Stantec UK Ltd:	3rd Floor, Station Road, Cambridge				
				Type : Catchment Area		
Area (ha)	0.009					

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.750
Winter Volumetric Runoff	0.840
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Area (ha)

0.002

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.750
Winter Volumetric Runoff	0.840
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Type : Catchment Area

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by: RO	Checked by:	Approved By:	
Report Details: Type: Inflows Storm Phase: Phase	Stantec UK Ltd: 3rd Floor, Station R CB1 2JH	oad, Cambridge	I	
CA_13				Type : Catchment Area
Area (ha)	0.024			
Dynamic Sizing				
Runoff Method Time of Concentration				
Summer Volumetric Runoff0.750Winter Volumetric Runoff0.840				
Time of Concentration (mins)5Percentage Impervious (%)100				
				Type : Catchment Area

Area (ha)

0.032

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.750
Winter Volumetric Runoff	0.840
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Inflows	3rd Floor, Station Road, Cambridge			
Storm Phase: Phase	CB1 2JH			

Type : Catchment Area

Area (ha)

0.001

Dynamic Sizing	
Runoff Method	Time of Concentration
Summer Volumetric Runoff	0.750
Winter Volumetric Runoff	0.840
Time of Concentration (mins)	5
Percentage Impervious (%)	100

Sheringham Recycling Surface Water Dr					ate: 1/08/2023							
1 in 2, 30 (+40%	CC) and 100 (+45% CC) RP		D. R	esigned by: O	Cł	ecked by:	Approve	ed By:			
Report Details: Type: Junctions Storm Phase: Pha	ase			St 3	antec UK Ltd: rd Floor, Station B1 2JH	Road, Camb	Cambridge					
Name	Junction Type	Easting (m)	Northing (m)	Cover Level (m)	Depth (m)	Invert Leve (m)	Chamber Shape	Diameter (m)	Manhole Locked	Access Required	Easting (m)	Northing (m)
CP S1	Manhole	616262.891	341024.746	90.218	1.168	89.05	0 Circular	1.200				
CP S2	Manhole	616279.735	341017.896	89.908	1.088	88.82	0 Circular	1.200				
CP S3	Manhole	616288.890	341021.904	89.679	1.134	88.54	5 Circular	1.200				
CP S4	Manhole	616309.916	341012.954	89.663	1.209	88.45	4 Circular	1.200				
CP S5	Manhole	616312.130	341012.081	89.507	1.065	88.44	2 Circular	1.200				
IC	Manhole	616278.657	341043.260	90.200	1.150	89.05	0 Circular	0.300	 Image: A set of the set of the			
RE	Simple Junction	616275.706	341035.870									

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Controls	3rd Floor, Station Road, Can	nbridge		
Storm Phase: Phase	CB1 2JH	-		

Bioretention Basin

Type : Bioretention

Ponding Area	
Exceedence Level (m)	89.150
Depth (m)	1.300
Base Level (m)	87.850
Top Area (m²)	270.06
Side Slope (1:x)	1.74
Base Area (m²)	82.94
Freeboard (mm)	300
Porosity (%)	100
Length (m)	41.342
Long. Slope (1:x)	0.00
Filtration Rate (m/hr)	0.3
Friction Scheme	Manning's n
n	0.045
Total Volume (m ³)	174.815
Filter Area	
Base Level (m)	87.050

Filtration Layers

Use	Name	Filtration Layer Depth (mm)	Porosity (%)	Conductivity (m/hr)	Soil Type
	Soil	0	0	0.0	Soil Type
	Storage	800	30	0.3	

_

Sheringham Recycling Centre: Surface Water Drainage	Date:	Date: 11/08/2023				
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:			
^{Report Details:} Type: Stormwater Controls Storm Phase: Phase	RO Stantec UK Ltd: 3rd Floor, Station Ro CB1 2JH	ad, Cambridge				
Advanced						
Safety Factor	1.5					
Ponding Area						
Side Infiltration Rate (m/hr)	0.126					
Base Perimeter (m)	86.697					
Top Perimeter (m)	95.749					
Filter Area						
Base Infiltration Rate (m/hr)	0.126					
Side Infiltration Rate (m/hr)	0.126					

Rain Garden

Type : Bioretention

heringham Recycling Centre: urface Water Drainage		Date: 11/08/2023				
in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:			
1112, 30(+40% CC) and $100(+43% CC)$ NF	RO	checked by.	, pprovod Djr			
eport Details:	Stantec UK Ltd:					
ype: Stormwater Controls	3rd Floor, Station Re	oad, Cambridge				
torm Phase: Phase	CB1 2JH					
Ponding Area						
Fonding Area						
Exceedence Level (m)	90.499					
Depth (m)	0.400					
Base Level (m)	90.099					
Top Area (m²)	5.75					
Side Slope (1:x)	0.00					
Base Area (m²)	5.75					
Freeboard (mm)	0					
Porosity (%)	100					
Length (m)	4.439					
Long. Slope (1:x)	0.00					
Filtration Rate (m/hr)	0.295					
Friction Scheme	Manning's n					
n	0.045					
Total Volume (m ³)	2.989					
Filter Area						
Base Level (m)	89.699					

Use	Name	Filtration Layer Depth (mm)	Porosity (%)	Conductivity (m/hr)	Soil Type
	Soil	0	0	0.0	Soil Type
	Storage	400	30	0.3	

Sheringham Recycling Centre: Surface Water Drainage 1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Date: 11/08/2023 Designed by: RO	11/08/2023					
Report Details: Type: Stormwater Controls Storm Phase: Phase	Stantec UK Ltd: 3rd Floor, Station Re CB1 2JH	pad, Cambridge					
Advanced							
Safety Factor	2.0						
Ponding Area							
Base Perimeter (m)	11.468						
Top Perimeter (m)	11.468						
Filter Area Base Infiltration Rate (m/hr)	0.295						

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023				
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:		
	RO				
Report Details:	Stantec UK Ltd:				
Type: Stormwater Controls	3rd Floor, Station Road, Cambridge				
Storm Phase: Phase	CB1 2JH	-			

Infiltration Swale

Type : Swale

Exceedence Level (m)	89.135
Depth (m)	0.400
Base Level (m)	88.735
Top Width (m)	2.500
Side Slope (1:x)	2.50
Base Width (m)	0.500
Freeboard (mm)	C
Length (m)	79.493
Long. Slope (1:x)	300.00
Filtration Rate (m/hr)	0.173
Friction Scheme	Manning's r
n	0.045
Total Volume (m ³)	47.696

Advanced	
Safety Factor	1.5
Swale	
Base Infiltration Rate (m/hr)	0.212
Side Infiltration Rate (m/hr)	0.212
Porosity (%)	100

Sheringham Recycling Centre: Surface Water Drainage	9				Date: 11/08/2023						
1 in 2, 30 (+40% CC) ar	nd 100 (+45% CC) l	RP			Designed by:		Checked by:	A	pproved By:		
					RO						
Report Details: Type: Connections Storm Phase: Phase					Stantec UK Ltd: 3rd Floor, Station Road, Cambridge CB1 2JH				E		
Name	Length (m)	Connection Type	Slope (1:x)	Manning's n	Colebrook- White Roughness (mm)	Diameter / Base Width (mm)	Upstream Cover Level (m)	Upstream Invert Level (m)	Downstream Cover Level (m)	Downstream Invert Level (m)	
S1.000	18.184	Pipe	80.105		0.6	150	90.218	89.050	89.908	88.823	
S1.001	9.993	Pipe	79.947		0.6	150	89.908	88.820	89.679	88.695	
S1.002	22.852	Pipe	251.119		0.6	300	89.679	88.545	89.663	88.454	
S1.003	2.380	Pipe	198.341		0.6	300	89.663	88.454	89.507	88.442	
S1.004	8.102	Pipe	225.063		0.6	300	89.507	88.442	88.900	88.406	
S3.000	1.398	Pipe	20.000		0.6	150	90.221	89.950	89.894	89.880	
S2.001	9.574	Pipe	100.000		0.6	100	90.200	89.050	89.925	88.954	
S2.000	7.957	Pipe	99.465		0.6	100	90.100	89.130	90.200	89.050	

Sheringham Recycling Centre: Surface Water Drainage		Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP		Designed by: RO	Checked by:	Approved By:	
Report Details: Type: Network Design Criteria Storm Phase: Phase		Stantec UK Ltd: 3rd Floor, Station Roa CB1 2JH	d, Cambridge	I	
Flow Options					
Peak Flow Calculation Min. Time of Entry (mins) Max. Travel Time (mins)	(UK) Modified Rational Method	5 30			
Pipe Options					
Lock Slope Options	Slopes and Invert Levels				
Use Flow Restriction Reduce Channel Depths					
Manhole Options					
Apply Offset Synchronise Manhole Invert Levels					

heringham Recycling Centre: urface Water Drainage	Date: 11/08/2023				
in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:		
	RO				
eport Details:	Stantec UK Ltd:	Stantec UK Ltd:			
ype: Rainfall Analysis Criteria	3rd Floor, Station F	load, Cambridge			
	CB1 2JH				

Runoff Type	Dynamic
Output Interval (mins)	5
Time Step	Default
Urban Creep	Apply Global Value
Urban Creep Global Value (%)	0
Junction Flood Risk Margin (mm)	300
Perform No Discharge Analysis	
Rainfall	

Sheringham Recycling Centre: Surface Water Drainage		Date: 11/08/2023					
1 in 2, 30 (+40% CC) and	100 (+45% CC) RP	Designed by:	Checked by:	Approved By:			
		RO					
Report Details:		Stantec UK Ltd:					
Type: Rainfall Analysis C	riteria	3rd Floor, Station R	oad, Cambridge				
		CB1 2JH					
FEH		-			Type: FEH		
Site Location	GB 616285 341035 TG 16285 41035						
Rainfall Version	2013						
Data Type	Point						
Summer	>						
Winter	✓						

Return Period

Return Period (years)	Increase Rainfall (%)
2.0	0
30.0	40
100.0	45

Storm Durations

Duration (mins)	Run Time (mins)
60	120
120	240
180	360
240	480
360	720
480	960
600	1200
720	1440
960	1920
1440	2880
2160	4320
2880	5760
4320	8640
5760	11520

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
Report Details:	RO Stantec UK Ltd:			
Type: Rainfall Analysis Criteria	3rd Floor, Station Road, Car			
	CB1 2JH			

FSR			
Region	England and Wales	5	
M5-60 (mm)	19.0		
Ratio R	0.400		
Summer	✓		
Winter	✓		

Return Period

Return Period (years)	Increase Rainfall (%)
2.0	0
30.0	40
100.0	45
Storm Durations	

Duration (mins)	Run Time (mins)
15	30
30	60

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Controls Summary	3rd Floor, Station Road, Car			
Storm Phase: Phase	CB1 2JH			

FEH: 2 years: Increase Rainfall (%): +0: Critical Storm Per Item

Stormwater Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Total Lost Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Half Drain Down Time (mins)	Percentage Available (%)	Status
Bioretention Basin	FEH: 2 years: +0 %: 120 mins: Summer	88.054	88.054	1.004	1.004	20.5	27.287	0.000	38.576	0.0	0.000	80	84	ОК
Infiltration Swale	FEH: 2 years: +0 %: 120 mins: Summer	89.064	88.928	0.064	0.193	7.7	5.943	0.000	16.259	0.0	0.000	17	88	ОК
Rain Garden	FEH: 2 years: +0 %: 60 mins: Summer	90.107	89.699	0.408	0.000	0.2	0.022	0.000	0.288	0.0	0.000	2	99	ОК

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023						
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:				
	RO						
Report Details:	Stantec UK Ltd:						
Type: Stormwater Controls Summary	3rd Floor, Station Road, Ca	3rd Floor, Station Road, Cambridge					
Storm Phase: Phase	CB1 2JH						

FEH: 30 years: Increase Rainfall (%): +40: Critical Storm Per Item

Stormwater Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Total Lost Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Half Drain Down Time (mins)	Percentage Available (%)	Status
Bioretention Basin	FEH: 30 years: +40 %: 120 mins: Winter	88.566	88.566	1.516	1.516	45.0	102.776	0.000	68.461	0.0	0.000	180	41	ОК
Infiltration Swale	FEH: 30 years: +40 %: 120 mins: Winter	89.135	89.134	0.135	0.399	17.4	26.462	0.000	50.029	0.0	0.000	51	45	ОК
Rain Garden	FEH: 30 years: +40 %: 60 mins: Winter	90.171	90.171	0.472	0.472	0.7	0.414	0.000	1.032	0.0	0.000	18	86	ОК

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Controls Summary	3rd Floor, Station Road, Car			
Storm Phase: Phase	CB1 2JH			

FEH: 100 years: Increase Rainfall (%): +45: Critical Storm Per Item

Stormwater Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Total Lost Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Half Drain Down Time (mins)	Percentage Available (%)	Status
Bioretention Basin	FEH: 100 years: +45 %: 180 mins: Winter	88.808	88.808	1.758	1.758	47.9	153.483	0.000	122.628	0.0	0.186	239	12	ОК
Infiltration Swale	FEH: 100 years: +45 %: 120 mins: Winter	89.217	89.217	0.218	0.482	23.9	40.003	4.203	66.470	0.0	0.000	65	16	Flood
Rain Garden	FEH: 100 years: +45 %: 60 mins: Winter	90.225	90.225	0.526	0.526	0.9	0.721	0.000	1.428	0.0	0.000	32	76	ОК

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
	Designed by:	Checked by:	Approved By:	
	RO Stantec UK Ltd:			
JI - J	3rd Floor, Station Road, Car	nbridge		
Storm Phase: Phase	CB1 2JH			

FSR: 2 years: Increase Rainfall (%): +0: Critical Storm Per Item

Stormwater Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Total Lost Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Half Drain Down Time (mins)	Percentage Available (%)	Status
Bioretention Basin	FSR: 2 years: +0 %: 30 mins: Winter	88.058	88.058	1.008	1.008	30.1	23.154	0.000	9.007	0.0	0.000	101	87	ОК
Infiltration Swale	FSR: 2 years: +0 %: 30 mins: Winter	89.081	88.941	0.081	0.206	11.6	6.693	0.000	7.860	0.0	0.000	24	86	ОК
Rain Garden	FSR: 2 years: +0 %: 15 mins: Winter	90.110	90.109	0.411	0.410	0.5	0.055	0.000	0.216	0.0	0.000	5	98	ОК

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023						
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:				
	RO						
Report Details:	Stantec UK Ltd:						
Type: Stormwater Controls Summary	3rd Floor, Station Road, Car	mbridge					
Storm Phase: Phase	CB1 2JH						

FSR: 30 years: Increase Rainfall (%): +40: Critical Storm Per Item

Stormwater Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Total Lost Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Half Drain Down Time (mins)	Percentage Available (%)	Status
Bioretention Basin	FSR: 30 years: +40 %: 30 mins: Winter	88.401	88.401	1.351	1.351	80.3	67.522	0.000	13.047	0.0	0.000	213	61	ОК
Infiltration Swale	FSR: 30 years: +40 %: 30 mins: Winter	89.136	89.099	0.137	0.364	31.0	21.684	0.000	14.915	0.0	0.000	50	55	ОК
Rain Garden	FSR: 30 years: +40 %: 30 mins: Winter	90.164	90.164	0.465	0.465	0.8	0.373	0.000	0.738	0.0	0.000	18	88	ОК

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Controls Summary	3rd Floor, Station Road, Car	nbridge		
Storm Phase: Phase	CB1 2JH			

FSR: 100 years: Increase Rainfall (%): +45: Critical Storm Per Item

Stormwater Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Total Lost Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Half Drain Down Time (mins)	Percentage Available (%)	Status
Bioretention Basin	FSR: 100 years: +45 %: 30 mins: Winter	88.556	88.556	1.506	1.506	108.7	92.422	0.000	14.813	0.0	0.000	258	47	OK
Infiltration Swale	FSR: 100 years: +45 %: 30 mins: Winter	89.161	89.160	0.161	0.425	41.9	30.436	1.027	17.712	0.0	0.000	61	36	Flood
Rain Garden	FSR: 100 years: +45 %: 30 mins: Winter	90.204	90.204	0.505	0.505	1.1	0.601	0.000	0.789	0.0	0.000	29	80	ОК

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by: RO	Checked by:	Approved By:	
Report Details: Type: Connections Summary	Stantec UK Ltd: 3rd Floor, Station Road, Car CB1 2JH	mbridge		

FEH: 2 years: Increase Rainfall (%): +0: Critical Storm Per Item

Connection	Storm Event	Connection Type	From	То	Upstream Cover Level (m)	Max. US Water Level (m)	Max. Flow Depth (m)	Discharge Volume (m³)	Max. Velocity (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
S1.000	FEH: 2 years: +0 %: 60 mins: Summer	Pipe	CP S1	CP S2	90.2	89.090	0.049	3.811	0.6	0.15	3.0	ОК
S1.001	FEH: 2 years: +0 %: 60 mins: Summer	Pipe	CP S2	CP S3	89.9	88.881	0.060	7.886	1.0	0.32	6.3	ок
S1.002	FEH: 2 years: +0 %: 60 mins: Summer	Pipe	CP S3	CP S4	89.7	88.645	0.109	19.824	0.7	0.23	15.9	ок
S1.003	FEH: 2 years: +0 %: 60 mins: Summer	Pipe	CP S4	CP S5	89.7	88.571	0.112	22.024	0.7	0.22	17.6	ок
S1.004	FEH: 2 years: +0 %: 60 mins: Summer	Pipe	CP S5	Bioretention Basin	89.5	88.549	0.104	22.021	0.8	0.24	17.6	ок
S3.000	FEH: 2 years: +0 %: 60 mins: Summer	Pipe	Rain Garden	Infiltration Swale	90.2	90.103	0.000	0.000	0.0	0	0.0	Surcharged
S2.001	FEH: 2 years: +0 %: 60 mins: Summer	Pipe	IC	Infiltration Swale	90.2	89.080	0.051	0.974	0.2	0.13	0.8	ОК
S2.000	FEH: 2 years: +0 %: 60 mins: Summer	Pipe	RE	IC	90.1	89.155	0.027	0.977	0.5	0.13	0.8	ОК

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:	-		
Type: Connections Summary	3rd Floor, Station Road, C	ambridge		
Storm Phase: Phase	CB1 2JH	-		

FEH: 30 years: Increase Rainfall (%): +40: Critical Storm Per Item

Connection	Storm Event	Connection Type	From	То	Upstream Cover Level (m)	Max. US Water Level (m)	Max. Flow Depth (m)	Discharge Volume (m³)	Max. Velocity (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
S1.000	FEH: 30 years: +40 %: 60 mins: Summer	Pipe	CP S1	CP S2	90.2	89.125	0.131	12.641	0.7	0.51	10.1	ОК
S1.001	FEH: 30 years: +40 %: 60 mins: Summer	Pipe	CP S2	CP S3	89.9	89.009	0.150	26.155	1.2	1.05	20.9	Surcharged
S1.002	FEH: 30 years: +40 %: 60 mins: Summer	Pipe	CP S3	CP S4	89.7	88.772	0.237	65.737	0.9	0.75	52.6	ок
S1.003	FEH: 30 years: +40 %: 60 mins: Summer	Pipe	CP S4	CP S5	89.7	88.700	0.233	73.030	1.0	0.74	58.5	ок
S1.004	FEH: 30 years: +40 %: 60 mins: Summer	Pipe	CP S5	Bioretention Basin	89.5	88.661	0.204	72.963	1.1	0.79	58.5	ОК
S3.000	FEH: 30 years: +40 %: 60 mins: Summer	Pipe	Rain Garden	Infiltration Swale	90.2	90.162	0.000	0.000	0.0	0	0.0	Surcharged
S2.001	FEH: 30 years: +40 %: 60 mins: Summer	Pipe	IC	Infiltration Swale	90.2	89.157	0.100	3.236	0.3	0.43	2.6	Surcharged
S2.000	FEH: 30 years: +40 %: 60 mins: Summer	Pipe	RE	IC	90.1	89.175	0.076	3.238	0.4	0.43	2.6	ок

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:	-		
Type: Connections Summary	3rd Floor, Station Road, C	ambridge		
Storm Phase: Phase	CB1 2JH	-		

FEH: 100 years: Increase Rainfall (%): +45: Critical Storm Per Item

Connection	Storm Event	Connection Type	From	То	Upstream Cover Level (m)	Max. US Water Level (m)	Max. Flow Depth (m)	Discharge Volume (m³)	Max. Velocity (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
S1.000	FEH: 100 years: +45 %: 60 mins: Summer	Pipe	CP S1	CP S2	90.2	89.338	0.150	17.461	0.8	0.7	13.9	Surcharged
S1.001	FEH: 100 years: +45 %: 60 mins: Summer	Pipe	CP S2	CP S3	89.9	89.213	0.150	36.126	1.6	1.45	28.8	Surcharged
S1.002	FEH: 100 years: +45 %: 60 mins: Summer	Pipe	CP S3	CP S4	89.7	88.891	0.300	90.722	1.0	1.04	72.6	Surcharged
S1.003	FEH: 100 years: +45 %: 60 mins: Summer	Pipe	CP S4	CP S5	89.7	88.771	0.298	100.342	1.1	1.03	80.6	Surcharged
S1.004	FEH: 100 years: +45 %: 60 mins: Summer	Pipe	CP S5	Bioretention Basin	89.5	88.720	0.284	99.813	1.3	1.09	80.6	ок
S3.000	FEH: 100 years: +45 %: 60 mins: Summer	Pipe	Rain Garden	Infiltration Swale	90.2	90.207	0.000	0.000	0.0	0	0.0	Surcharged
S2.001	FEH: 100 years: +45 %: 60 mins: Summer	Pipe	IC	Infiltration Swale	90.2	89.205	0.100	4.455	0.4	0.56	3.4	Surcharged
S2.000	FEH: 100 years: +45 %: 60 mins: Summer	Pipe	RE	IC	90.1	89.236	0.100	4.461	0.5	0.58	3.5	Surcharged

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Connections Summary	3rd Floor, Station Ro	ad, Cambridge		
Storm Phase: Phase	CB1 2JH	-		

FSR: 2 years: Increase Rainfall (%): +0: Critical Storm Per Item

Connection	Storm Event	Connection Type	From	То	Upstream Cover Level (m)	Max. US Water Level (m)	Max. Flow Depth (m)	Discharge Volume (m³)	Max. Velocity (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
S1.000	FSR: 2 years: +0 %: 15 mins: Summer	Pipe	CP S1	CP S2	90.2	89.105	0.071	2.606	0.7	0.29	5.8	ОК
S1.001	FSR: 2 years: +0 %: 15 mins: Summer	Pipe	CP S2	CP S3	89.9	88.909	0.086	5.395	1.1	0.58	11.6	ок
S1.002	FSR: 2 years: +0 %: 15 mins: Summer	Pipe	CP S3	CP S4	89.7	88.692	0.155	13.551	0.8	0.42	29.2	ок
S1.003	FSR: 2 years: +0 %: 15 mins: Summer	Pipe	CP S4	CP S5	89.7	88.617	0.156	15.038	0.8	0.4	31.2	ок
S1.004	FSR: 2 years: +0 %: 15 mins: Summer	Pipe	CP S5	Bioretention Basin	89.5	88.589	0.140	15.025	0.9	0.41	30.1	ок
S3.000	FSR: 2 years: +0 %: 15 mins: Summer	Pipe	Rain Garden	Infiltration Swale	90.2	90.107	0.000	0.000	0.0	0	0.0	Surcharged
S2.001	FSR: 2 years: +0 %: 15 mins: Winter	Pipe	IC	Infiltration Swale	90.2	89.104	0.074	0.744	0.2	0.23	1.4	ОК
S2.000	FSR: 2 years: +0 %: 15 mins: Winter	Pipe	RE	IC	90.1	89.165	0.044	0.747	0.5	0.26	1.6	ок

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
Report Details:	RO Stantec UK Ltd:			
Type: Connections Summary	3rd Floor, Station I	Road, Cambridge		
Storm Phase: Phase	CB1 2JH			

FSR: 30 years: Increase Rainfall (%): +40: Critical Storm Per Item

Connection	Storm Event	Connection Type	From	То	Upstream Cover Level (m)	Max. US Water Level (m)	Max. Flow Depth (m)	Discharge Volume (m³)	Max. Velocity (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
S1.000	FSR: 30 years: +40 %: 15 mins: Summer	Pipe	CP S1	CP S2	90.2	89.276	0.150	6.918	0.7	0.61	12.2	Surcharged
S1.001	FSR: 30 years: +40 %: 15 mins: Summer	Pipe	CP S2	CP S3	89.9	89.175	0.150	14.319	1.5	1.32	26.2	Surcharged
S1.002	FSR: 30 years: +40 %: 15 mins: Summer	Pipe	CP S3	CP S4	89.7	88.903	0.300	35.974	1.0	1.06	74.1	Surcharged
S1.003	FSR: 30 years: +40 %: 15 mins: Summer	Pipe	CP S4	CP S5	89.7	88.774	0.299	39.957	1.2	1.04	81.8	Surcharged
S1.004	FSR: 30 years: +40 %: 15 mins: Summer	Pipe	CP S5	Bioretention Basin	89.5	88.720	0.250	39.944	1.3	1.09	80.2	ОК
S3.000	FSR: 30 years: +40 %: 15 mins: Summer	Pipe	Rain Garden	Infiltration Swale	90.2	90.152	0.000	0.000	0.0	0	0.0	Surcharged
S2.001	FSR: 30 years: +40 %: 15 mins: Winter	Pipe	IC	Infiltration Swale	90.2	89.190	0.100	1.977	0.4	0.52	3.1	Surcharged
S2.000	FSR: 30 years: +40 %: 15 mins: Winter	Pipe	RE	IC	90.1	89.223	0.100	1.982	0.5	0.59	3.6	ОК

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:	-		
Type: Connections Summary	3rd Floor, Station Road, C	ambridge		
Storm Phase: Phase	CB1 2JH	-		

FSR: 100 years: Increase Rainfall (%): +45: Critical Storm Per Item

Connection	Storm Event	Connection Type	From	То	Upstream Cover Level (m)	Max. US Water Level (m)	Max. Flow Depth (m)	Discharge Volume (m³)	Max. Velocity (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
S1.000	FSR: 100 years: +45 %: 15 mins: Summer	Pipe	CP S1	CP S2	90.2	89.661	0.150	9.304	0.9	0.77	15.3	Surcharged
S1.001	FSR: 100 years: +45 %: 15 mins: Summer	Pipe	CP S2	CP S3	89.9	89.513	0.150	19.256	1.9	1.65	32.8	Surcharged
S1.002	FSR: 100 years: +45 %: 15 mins: Summer	Pipe	CP S3	CP S4	89.7	89.111	0.300	48.343	1.4	1.37	95.8	Surcharged
S1.003	FSR: 100 years: +45 %: 15 mins: Summer	Pipe	CP S4	CP S5	89.7	88.891	0.300	53.708	1.5	1.35	106.3	Surcharged
S1.004	FSR: 100 years: +45 %: 15 mins: Summer	Pipe	CP S5	Bioretention Basin	89.5	88.815	0.300	53.690	1.5	1.42	105.0	Surcharged
S3.000	FSR: 100 years: +45 %: 15 mins: Summer	Pipe	Rain Garden	Infiltration Swale	90.2	90.178	0.000	0.000	0.0	0	0.0	Surcharged
S2.001	FSR: 100 years: +45 %: 15 mins: Winter	Pipe	IC	Infiltration Swale	90.2	89.237	0.100	2.606	0.5	0.68	4.1	Surcharged
S2.000	FSR: 100 years: +45 %: 15 mins: Winter	Pipe	RE	IC	90.1	89.296	0.100	2.660	0.6	0.78	4.7	Surcharged

Sheringham Recycling Centre:	Date:			
Surface Water Drainage	11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Car	nbridge		
	CB1 2JH	-		

Bioretention Basin

Critical by Return Period: FEH: 2 years: Increase Rainfall (%): +0: 120 mins: Summer

Tables

Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.800	0.800	0.000	0.000	0.0	0.0
5	1.0	0.800	0.800	0.020	0.000	0.4	0.4
10	2.1	0.813	0.800	0.393	0.000	0.8	0.8
15	2.2	0.821	0.800	0.788	0.000	0.8	0.8
20	2.4	0.822	0.800	1.210	0.000	0.9	0.9
25	2.6	0.822	0.800	1.627	0.000	1.3	1.3
30	2.9	0.824	0.800	2.063	0.000	1.3	1.3
35	3.3	0.827	0.800	2.597	0.000	1.3	1.3
40	4.1	0.831	0.800	3.282	0.000	1.5	1.5
45	5.6	0.837	0.800	4.199	0.000	1.8	1.8
50	8.7	0.849	0.800	5.701	0.000	2.3	2.3
55	13.3	0.865	0.837	8.244	0.000	2.5	2.5
60	19.5	0.893	0.885	12.362	0.000	2.7	2.7
65	20.5	0.938	0.936	17.627	0.000	2.9	2.9
70	15.0	0.975	0.975	22.147	0.000	3.1	3.1
75	10.1	0.996	0.996	24.932	0.000	3.3	3.3
80	6.6	1.004	1.004	26.422	0.000	3.3	3.3
85	4.7	1.004	1.004	27.078	0.000	3.4	3.4
90	3.6	1.000	1.000	27.287	0.000	3.4	3.4
95	3.1	0.994	0.994	27.257	0.000	3.5	3.5
100	2.7	0.987	0.987	27.094	0.000	3.5	3.5
105	2.5	0.979	0.979	26.833	0.000	3.5	3.5
110	2.3	0.971	0.971	26.499	0.000	3.5	3.5
115	2.1	0.962	0.962	26.111	0.000	3.5	3.5
120	2.0	0.952	0.952	25.684	0.000	3.5	3.5
125	0.7	0.941	0.941	25.069	0.000	3.5	3.5

32/56

Type : Bioretention

Sheringham Recy Surface Wate						Date: 11/08/2023				
1 in 2, 30 (+40	0% CC) and 10	0 (+45% CC) F	RP			Designed by:		Checked by:	Approved By:	
						RO				
Report Details: Type: Stormw Storm Phase:	vater Control Re Phase	esults				Stantec UK Ltd: 3rd Floor, Sta CB1 2JH	tion Road, Can	nbridge		
Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)			
130	0.1	0.926	0.926	24.122	0.000	3.5	3.5			
135	0.0	0.910	0.910	23.113	0.000	3.5	3.5			
140	0.0	0.894	0.894	22.093	0.000	3.4	3.4			
145	0.0	0.878	0.878	21.074	0.000	3.4	3.4			
150	0.0	0.862	0.862	20.062	0.000	3.4	3.4			
155	0.0	0.845	0.845	19.055	0.000	3.3	3.3			
160		0.829	0.829	18.059	0.000	3.3	3.3			
165	0.0	0.813	0.812	17.083	0.000	3.3	3.3			
170	0.0	0.800	0.800	16.088	0.000	3.2				
175		0.800	0.800		0.000		3.2			
180	0.0	0.800	0.800	14.190	0.000	3.1	3.1			
185	0.0	0.800	0.800	13.276	0.000	3.0	3.0			
190	0.0	0.800	0.800	12.383	0.000	2.9	2.9			
195		0.800	0.800		0.000	2.9	2.9			
200	0.0	0.800	0.800	10.661	0.000	2.8	2.8			
205	0.0	0.800	0.800	9.832	0.000	2.7	2.7			
210		0.800	0.800		0.000	2.7	2.7			
215		0.800	0.800	8.231	0.000	2.6	2.6			
220		0.800	0.800		0.000	2.5	2.5			
225		0.800	0.800		0.000					
230		0.800	0.800	5.973	0.000	2.4	2.4			
235	0.0	0.800	0.800	5.256	0.000	2.4	2.4			
240	0.0	0.800	0.800	4.575	0.000	2.3	2.3			

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Car	mbridge		
	CB1 2JH	-		

Infiltration Swale

Critical by Return Period: FEH: 2 years: Increase Rainfall (%): +0: 120 mins: Summer

Tables

Time (mins)	Total Inflow (L/s)	US Depth (m)	DS Depth (m)	Resident Volume(m ³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.000	0.000	0.000	0.000	0.0	0.0
5	0.7	0.004	0.000	0.028	0.000	0.3	0.3
10	0.8	0.014	0.000	0.119	0.000	0.5	0.5
15	0.8	0.020	0.000	0.174	0.000	0.7	0.7
20	0.9	0.022	0.000	0.222	0.000	0.7	0.7
25	1.0	0.020	0.000	0.271	0.000	0.8	0.8
30	1.1	0.018	0.000	0.307	0.000	1.0	1.0
35	1.3	0.019	0.000	0.351	0.000	1.1	1.1
40	1.6	0.022	0.000	0.453	0.000	1.2	1.2
45	2.2	0.028	0.000	0.636	0.000	1.5	1.5
50	3.5	0.040	0.000	1.018	0.000	1.8	1.8
55	5.3	0.050	0.014	1.720	0.000	2.2	2.2
60	7.7	0.062	0.075	2.957	0.000	2.5	2.5
65	7.7	0.064	0.135	4.462	0.000	2.9	2.9
70	5.3	0.054	0.174	5.535	0.000	3.1	3.1
75	3.5	0.042	0.189	5.943	0.000	3.1	3.1
80	2.3	0.033	0.193	5.892	0.000	3.1	3.1
85	1.6	0.026	0.190	5.575	0.000	3.0	3.0
90	1.3	0.023	0.183	5.139	0.000	2.9	2.9
95	1.1	0.021	0.175	4.657	0.000	2.8	2.8
100	1.0	0.019	0.165	4.159	0.000	2.7	2.7
105	0.9	0.018	0.155	3.660	0.000	2.6	2.6
110	0.8	0.018	0.144	3.173	0.000	2.4	2.4
115	0.8	0.018	0.133	2.706	0.000	2.3	2.3
120	0.8	0.016	0.121	2.314	0.000	2.0	2.0
125	0.0	0.007	0.109	1.856	0.000	1.8	1.8
130	0.0	0.000	0.097	1.427	0.000	1.1	1.1

Type : Swale

Sheringham Recyc	ling Contro:					Date:					
Surface Water						11/08/2023					
)% CC) and 10	0 (+45% CC) F	٦P			Designed by:		Checked by:	Approved By:		
•		· · ·				RO					
Report Details:						Stantec UK Ltd:					
Storm Phase:	ater Control Re	sults				3rd Floor, Stat CB1 2JH					
Stoffin Filase.											
Time (mins)	Total Inflow	US Depth	DS Depth	Resident	Flooded	Infiltration	Total Outflow				
	(L/s)	(m)	(m)	Volume(m ³)		(L/s)	(L/s)				
135 140	0.0	0.000	0.085	1.125	0.000	1.0	1.0				
140	0.0	0.000 0.000	0.073 0.060	0.846	0.000	0.9 0.5	0.9 0.5				
145	0.0	0.000	0.060	0.630	0.000	0.5	0.5				
150	0.0	0.000	0.048	0.482	0.000	0.5	0.3				
160	0.0	0.000	0.030	0.343	0.000	0.4	0.4				
165	0.0	0.000	0.024	0.221	0.000	0.4	0.4				
170	0.0	0.000	0.012	0.009	0.000	0.4	0.4				
175	0.0	0.000	0.001	0.000	0.000	0.0	0.0				
180	0.0	0.000	0.000	0.000	0.000	0.0	0.0				
185	0.0	0.000	0.000	0.000	0.000	0.0	0.0				
190	0.0	0.000	0.000	0.000	0.000	0.0	0.0				
195	0.0	0.000	0.000	0.000	0.000	0.0	0.0				
200	0.0	0.000	0.000	0.000	0.000	0.0	0.0				
205	0.0	0.000	0.000	0.000	0.000	0.0	0.0				
210	0.0	0.000	0.000	0.000	0.000	0.0	0.0				
215	0.0	0.000	0.000	0.000	0.000	0.0	0.0				
220	0.0	0.000	0.000	0.000	0.000	0.0	0.0				
225	0.0	0.000	0.000	0.000	0.000	0.0	0.0				
230	0.0	0.000	0.000	0.000	0.000	0.0	0.0				
235	0.0	0.000	0.000	0.000	0.000	0.0	0.0				
240	0.0	0.000	0.000	0.000	0.000	0.0	0.0				

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Car	nbridge		
Storm Phase: Phase	CB1 2JH	-		

Rain Garden

Critical by Return Period: FEH: 2 years: Increase Rainfall (%): +0: 60 mins: Summer

Tables

Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m³)	Outlet(L/s)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
5	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
10	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
15	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
20	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
25	0.1	0.400	0.400	0.000	0.000	0.0	0.1	0.1
30	0.2	0.404	0.400	0.012	0.000	0.0	0.2	0.2
35	0.2	0.408	0.400	0.022	0.000	0.0	0.2	0.2
40	0.1	0.404	0.400	0.013	0.000	0.0	0.2	0.2
45	0.1	0.400	0.400	0.000	0.000	0.0	0.1	0.1
50	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
55	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
60	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
65	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
70	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
75	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
80	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
85	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
90	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
95	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
100	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
105	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
110	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
115	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
120	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0

Type : Bioretention

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Car	nbridge		
	CB1 2JH	-		

Bioretention Basin

Critical by Return Period: FEH: 30 years: Increase Rainfall (%): +40: 120 mins: Winter

Tables

Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.800	0.800	0.000	0.000	0.0	0.0
5	1.8	0.802	0.800	0.081	0.000	0.4	0.4
10	6.2	0.836	0.800	1.074	0.000	1.1	1.1
15	7.9	0.847	0.800	2.803	0.000	1.7	1.7
20	8.1	0.852	0.814	4.602	0.000	2.2	2.2
25	8.5	0.855	0.844	6.407	0.000	2.3	2.3
30	9.8	0.867	0.861	8.415	0.000	2.4	2.4
35	12.9	0.887	0.883	11.046	0.000	2.6	2.6
40	17.8	0.919	0.916	14.829	0.000	2.8	2.8
45	24.4	0.966	0.965	20.268	0.000	3.0	3.0
50	31.8	1.031	1.030	27.723	0.000	3.3	3.3
55	38.9	1.110	1.109	37.279	0.000	3.7	3.7
60	44.4	1.197	1.196	48.638	0.000	4.1	4.1
65	45.0	1.283	1.283	60.840	0.000	4.5	4.5
70	40.5	1.358	1.358	72.338	0.000	4.8	4.8
75	33.6	1.417	1.417	81.985	0.000	5.1	5.1
80	26.3	1.459	1.459	89.406	0.000	5.4	5.4
85	19.3	1.486	1.486	94.561	0.000	5.5	5.5
90	13.8	1.502	1.502	97.786	0.000	5.6	5.6
95	10.3	1.510	1.510	99.686	0.000	5.7	5.7
100	8.6	1.513	1.513	100.792	0.000	5.8	5.8
105	8.2	1.515	1.515	101.564	0.000	5.8	5.8
110	8.1	1.516	1.516	102.248	0.000	5.8	5.8
115	7.1	1.516	1.516	102.776	0.000	5.9	5.9
120	3.7	1.513	1.513	102.655	0.000	5.9	5.9
125	0.8	1.504	1.504	101.537	0.000	5.9	5.9

Created in InfoDrainage 2022.1

37/56

Type : Bioretention

Sheringham Recy						Date:				
Surface Wate	0		חר			11/08/2023 Designed by:				
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP Report Details:								Checked by:	Approved By:	
						RO Stantec UK Ltd:				
ype: Stormwater Control Results						tion Road, Car	nbridae			
Storm Phase: Phase					CB1 2JH	,	0			
Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)			
130	0.3	1.491	1.491	99.908	0.000	5.9				
135		1.479	1.479	98.236	0.000	5.9				
140		1.466	1.466	96.561	0.000	5.9				
145		1.453	1.453	94.887	0.000	5.8				
150		1.440	1.440	93.214	0.000	5.8				
155		1.428	1.428	91.542	0.000	5.8				
160		1.415	1.415	89.870	0.000	5.8				
165		1.401	1.401	88.189	0.000	5.8				
170		1.388	1.388	86.444	0.000	5.7				
175		1.374	1.374	84.732	0.000	5.7				
180		1.361	1.361	83.017	0.000	5.7				
185		1.347	1.347	81.340	0.000	5.7				
190		1.333	1.333	79.635	0.000	5.6				
195		1.320	1.320	77.961	0.000	5.6				
200		1.307	1.307	76.283	0.000	5.6				
205		1.294	1.294	74.627	0.000	5.5				
210		1.282	1.282	72.951	0.000	5.5				
215		1.270	1.270	71.317	0.000	5.4				
220		1.258	1.258	69.688	0.000	5.4				
225	0.0	1.246	1.246	68.084	0.000	5.3				
230		1.234	1.234	66.510	0.000	5.3				
235	0.0	1.222	1.222	64.930	0.000	5.2				
240	0.0	1.211	1.211	63.335	0.000	5.2	5.2			

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Car	nbridge		
	CB1 2JH	-		

Infiltration Swale

Critical by Return Period: FEH: 30 years: Increase Rainfall (%): +40: 120 mins: Winter

Tables

Time (mins)	Total Inflow (L/s)	US Depth (m)	DS Depth (m)	Resident Volume(m ³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.000	0.000	0.000	0.000	0.0	0.0
5	1.1	0.009	0.000	0.070	0.000	0.4	0.4
10	2.6	0.037	0.000	0.427	0.000	0.9	0.9
15	3.1	0.036	0.000	0.924	0.000	1.6	1.6
20	3.1	0.037	0.004	1.317	0.000	2.0	2.0
25	3.3	0.039	0.046	1.652	0.000	2.2	2.2
30	3.9	0.042	0.070	2.063	0.000	2.3	2.3
35	5.2	0.050	0.095	2.713	0.000	2.4	2.4
40	7.1	0.060	0.122	3.787	0.000	2.7	2.7
45	9.7	0.071	0.159	5.446	0.000	3.1	3.1
50	12.6	0.083	0.203	7.795	0.000	3.5	3.5
55	15.3	0.093	0.249	10.845	0.000	4.0	4.0
60	17.3	0.099	0.293	14.459	0.000	4.6	4.6
65	17.4	0.102	0.332	18.228	0.000	5.1	5.1
70	15.4	0.112	0.361	21.558	0.000	5.5	5.5
75	12.6	0.123	0.381	24.067	0.000	5.8	5.8
80	9.8	0.131	0.393	25.665	0.000	6.0	6.0
85	7.2	0.135	0.398	26.411	0.000	6.0	6.0
90	5.2	0.135	0.399	26.462	0.000	6.0	6.0
95	3.9	0.131	0.396	26.029	0.000	6.0	6.0
100	3.3	0.126	0.391	25.330	0.000	5.9	5.9
105	3.2	0.121	0.385	24.543	0.000	5.8	5.8
110	3.1	0.115	0.380	23.757	0.000	5.7	5.7
115	2.7	0.109	0.374	22.934	0.000	5.6	5.6
120	1.2	0.101	0.366	21.865	0.000	5.5	5.5
125	0.1	0.090	0.355	20.448	0.000	5.3	5.3
130	0.1	0.078	0.343	18.905	0.000	5.1	5.1

Type : Swale

Sheringham Recyc	ling Control					Date:				-
Surface Water						Date: 11/08/2023				
	0% CC) and 10	0 (+45% CC) F	RP			Designed by:		—		
, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					RO		-		
Report Details:	•					Stantec UK Ltd:				
	Type: Stormwater Control Results					3rd Floor, Stat				
Storm Phase: Phase						CB1 2JH				
Time (mins)	Total Inflow	US Depth	DS Depth	Resident	Flooded	Infiltration	Total Outflow			
· · /	(L/s)	(m)	(m)	Volume(m ³)	• •	(L/s)	(L/s)			
135	0.1	0.065	0.330		0.000	4.9	4.9			
140		0.053	0.318		0.000	4.7	4.7			
145	0.0	0.041	0.306	14.629	0.000	4.5	4.5			
150	0.0	0.028	0.293	13.320	0.000	4.3	4.3			
155	0.0	0.016	0.281	12.073	0.000	4.1	4.1			
160		0.004	0.269		0.000	3.9	3.9			
165		0.000	0.257		0.000	3.4	3.4			
170	0.0	0.000	0.244	8.824	0.000	3.2	3.2			
175	0.0	0.000	0.232		0.000	3.0	3.0			
180	0.0	0.000	0.220	7.004	0.000	2.9	2.9			
185	0.0	0.000	0.207	6.181	0.000	2.7	2.7			
190	0.0	0.000	0.195	5.417	0.000	2.2	2.2			
195	0.0	0.000	0.183	4.768	0.000	2.1	2.1			
200	0.0	0.000	0.171	4.151	0.000	2.0	2.0			
205	0.0	0.000	0.158	3.575	0.000	1.9	1.9			
210		0.000	0.146	3.024	0.000	1.7	1.7			
215	0.0	0.000	0.134	2.520	0.000	1.6	1.6			
220	0.0	0.000	0.122	2.124	0.000	1.2	1.2			
225	0.0	0.000	0.110	1.771	0.000	1.1	1.1			
230	0.0	0.000	0.097	1.446	0.000	1.1	1.1			
235	0.0	0.000	0.085	1.141	0.000	1.0	1.0			
240	0.0	0.000	0.073	0.855	0.000	0.9	0.9			

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023					
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:			
	RO					
Report Details:	Stantec UK Ltd:					
Type: Stormwater Control Results	3rd Floor, Station Road, Car					
Storm Phase: Phase	CB1 2JH					

Rain Garden

Critical by Return Period: FEH: 30 years: Increase Rainfall (%): +40: 60 mins: Winter

Tables

Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Outlet(L/s)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
5	0.1	0.400	0.400	0.000	0.000	0.0	0.1	0.1
10	0.1	0.400	0.400	0.000	0.000	0.0	0.1	0.1
15	0.1	0.402	0.400	0.005	0.000	0.0	0.1	0.1
20	0.2	0.407	0.400	0.019	0.000	0.0	0.2	0.2
25	0.5	0.411	0.409	0.056	0.000	0.0	0.2	0.2
30	0.7	0.427	0.427	0.153	0.000	0.0	0.2	0.2
35	0.7	0.449	0.449	0.280	0.000	0.0	0.2	0.2
40	0.5	0.466	0.466	0.378	0.000	0.0	0.2	0.2
45	0.3	0.472	0.472	0.414	0.000	0.0	0.2	0.2
50	0.1	0.470	0.470	0.402	0.000	0.0	0.2	0.2
55	0.1	0.465	0.465	0.372	0.000	0.0	0.2	0.2
60	0.1	0.458	0.458	0.333	0.000	0.0	0.2	0.2
65	0.0	0.448	0.448	0.274	0.000	0.0	0.2	0.2
70	0.0	0.435	0.435	0.204	0.000	0.0	0.2	0.2
75	0.0	0.423	0.423	0.133	0.000	0.0	0.2	0.2
80	0.0	0.411	0.411	0.063	0.000	0.0	0.2	0.2
85	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
90	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
95	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
100	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
105	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
110	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
115	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
120	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023				
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:		
	RO				
Report Details:	Stantec UK Ltd:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Car				
	CB1 2JH				

Bioretention Basin

Critical by Return Period: FEH: 100 years: Increase Rainfall (%): +45: 180 mins: Winter

Tables

Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.800	0.800	0.000	0.000	0.0	0.0
5	1.2	0.800	0.800	0.034	0.000	0.4	0.4
10	5.0	0.829	0.800	0.769	0.000	0.8	0.8
15	7.3	0.844	0.800	2.287	0.000	1.7	1.7
20	8.3	0.851	0.802	4.073	0.000	2.2	2.2
25	8.5	0.854	0.839	5.937	0.000	2.3	2.3
30	8.6	0.862	0.856	7.801	0.000	2.4	2.4
35	8.7	0.873	0.870	9.659	0.000	2.5	2.5
40	9.4	0.886	0.884	11.603	0.000	2.6	2.6
45	10.7	0.902	0.900	13.808	0.000	2.7	2.7
50	13.0	0.923	0.922	16.506	0.000	2.9	2.9
55	16.1	0.951	0.950	19.959	0.000	3.0	3.0
60	20.0	0.989	0.988	24.406	0.000	3.2	3.2
65	24.6	1.036	1.036	30.065	0.000	3.5	3.5
70	29.7	1.093	1.093	37.109	0.000	3.8	3.8
75	35.0	1.159	1.159	45.636	0.000	4.1	4.1
80	40.1	1.233	1.232	55.629	0.000	4.4	4.4
85	44.4	1.310	1.310	66.935	0.000	4.8	4.8
90	47.6	1.389	1.389	79.276	0.000	5.1	5.1
95	47.9	1.466	1.466	92.028	0.000	5.5	5.5
100	44.6	1.534	1.534	104.244	0.000	5.8	5.8
105	39.7	1.592	1.592	115.115	0.000	6.1	6.1
110	34.7	1.638	1.638	124.322	0.000	6.3	6.3
115	29.7	1.675	1.675	132.045	0.000	6.5	6.5
120	24.4	1.705	1.704	138.222	0.000	6.7	6.7
125	20.5	1.725	1.724	142.976	0.000	6.8	6.8

Created in InfoDrainage 2022.1

Sheringham Recyc	cling Centre:					Date:				
Surface Water	r Drainage					11/08/2023				
1 in 2, 30 (+40	0% CC) and 10	0 (+45% CC) F	RP			Designed by: RO		Checked by:	Approved By:	
Report Details: Type: Stormw Storm Phase:	ater Control Re Phase	esults				Stantec UK Ltd: 3rd Floor, Sta CB1 2JH				
Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)			
130	16.2	1.740	1.739	146.427	0.000	6.9	6.9			
135	13.8	1.748	1.749	148.816	0.000	7.0	7.0	1		
140	11.1	1.754	1.754	150.373	0.000	7.0	7.0			
145	7.2	1.756	1.756	151.351	0.000	7.1	7.1	1		
150	5.9	1.758	1.758	151.978	0.000	7.1	7.1			
155	8.7	1.758	1.758	152.422	0.000	7.2				
160	8.6	1.758	1.758	152.836	0.000	7.2				
165	8.4	1.758	1.758	153.223	0.000	7.2	7.2	1		
170	7.7	1.758	1.757	153.483	0.000	7.2	7.2			
175	5.9	1.755	1.755	153.374	0.000	7.3	7.3	1		
180	2.4	1.750	1.749	152.505	0.000	7.3				
185	0.5	1.739	1.739	150.770	0.000	7.3	7.3	1		
190	0.1	1.727	1.727	148.613	0.000	7.2				
195	0.6	1.716	1.716	146.572	0.000	7.2	7.2			
200	0.5	1.704	1.705	144.495	0.000	7.2	7.2			
205	0.6	1.694	1.694	142.426	0.000	7.2	7.2	1		
210	0.5	1.683	1.683	140.408	0.000	7.1	7.1			
215	0.4	1.673	1.673	138.361	0.000	7.1	7.1	1		
220	0.4	1.662	1.662	136.354	0.000	7.0	7.0			
225	0.3	1.652	1.652	134.380	0.000	7.0	7.0			
230	0.4	1.642	1.642	132.417	0.000	7.0	7.0			
235	0.4	1.631	1.631	130.431	0.000	6.9				
240	0.4	1.621	1.621	128.487	0.000	6.9	6.9			
245	0.4	1.611	1.611	126.603	0.000	6.8				
250	0.4	1.601	1.601	124.633	0.000	6.8				
255	0.4	1.590	1.590	122.727	0.000	6.7	6.7			
260	0.4	1.580	1.580	120.833	0.000	6.7	6.7			
265	0.4	1.570	1.569	118.945	0.000	6.7	6.7			
270	0.4	1.559	1.559	117.088	0.000	6.6				
275	0.4	1.549	1.549	115.245	0.000	6.6				
280	0.4	1.538	1.538	113.398	0.000	6.5				
285	0.4	1.528	1.528	111.541	0.000	6.5				
290	0.4	1.517	1.517	109.726	0.000	6.4	6.4			
295	0.4	1.507	1.507	107.911	0.000	6.4				

Sheringham Recyc Surface Wate						Date: 11/08/2023							
	0% CC) and 10	0 (+45% CC) F	RP			Designed by: Checked by: Approved By:							
	,	· · · ·				RO							
Report Details:						Stantec UK Ltd:							
	ater Control Re	esults				3rd Floor, Stat	tion Road, Car	nbridge					
Storm Phase:	orm Phase: Phase					CB1 2JH							
Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)						
300	0.3	1.496	1.496	106.083	0.000	6.4	6.4						
305	0.3	1.485	1.485	104.273	0.000	6.3	6.3						
310	0.2	1.474	1.474	102.461	0.000	6.3	6.3						
315	0.2	1.464	1.464	100.660	0.000	6.2	6.2						
320	0.2	1.453	1.453	98.870	0.000	6.2	6.2						
325	0.2	1.442	1.442	97.090	0.000	6.1	6.1						
330	0.2	1.431	1.431	95.320	0.000	6.1	6.1						
335	0.2	1.420	1.420	93.559	0.000	6.0	6.0						
340	0.1	1.409	1.409	91.788	0.000	6.0	6.0						
345	0.0	1.397	1.397	90.021	0.000	6.0	6.0						
350	0.0	1.386	1.386	88.237	0.000	5.9	5.9						
355	0.0	1.374	1.374	86.480	0.000	5.9	5.9						
360	0.0	1.363	1.363	84.723	0.000	5.8	5.8						

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023				
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:		
	RO				
Report Details:	Stantec UK Ltd:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Car				
	CB1 2JH				

Infiltration Swale

Critical by Return Period: FEH: 100 years: Increase Rainfall (%): +45: 120 mins: Winter

Tables

Time (mins)	Total Inflow (L/s)	US Depth (m)	DS Depth (m)	Resident Volume(m ³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.000	0.000	0.000	0.000	0.0	0.0
5	1.5	0.014	0.000	0.118	0.000	0.5	0.5
10	3.7	0.044	0.000	0.647	0.000	1.2	1.2
15	4.3	0.044	0.000	1.391	0.000	1.9	1.9
20	4.3	0.046	0.045	2.043	0.000	2.3	2.3
25	4.5	0.047	0.093	2.669	0.000	2.4	2.4
30	5.4	0.051	0.118	3.398	0.000	2.6	2.6
35	7.1	0.060	0.143	4.454	0.000	2.9	2.9
40	9.8	0.072	0.176	6.096	0.000	3.2	3.2
45	13.4	0.086	0.215	8.556	0.000	3.7	3.7
50	17.4	0.099	0.262	11.989	0.000	4.2	4.2
55	21.2	0.110	0.311	16.411	0.000	4.8	4.8
60	23.9	0.125	0.359	21.617	0.000	5.5	5.5
65	23.9	0.150	0.401	27.042	0.016	6.1	6.1
70	21.1	0.174	0.433	31.879	1.370	6.5	6.5
75	17.3	0.194	0.457	35.637	2.386	6.8	6.8
80	13.4	0.208	0.472	38.177	3.295	7.0	7.0
85	9.9	0.215	0.480	39.556	3.980	7.1	7.1
90	7.2	0.218	0.482	40.003	4.203	7.1	7.1
95	5.4	0.216	0.481	39.764	4.087	7.1	7.1
100	4.6	0.213	0.477	39.146	3.785	7.1	7.1
105	4.4	0.208	0.473	38.373	3.406	7.0	7.0
110	4.3	0.204	0.469	37.589	3.021	7.0	7.0
115	3.7	0.199	0.464	36.708	2.686	6.9	6.9
120	1.7	0.191	0.456	35.488	2.368	6.8	6.8
125	0.1	0.181	0.446	33.759	1.913	6.7	6.7
130	0.1	0.169	0.434	31.791	1.391	6.5	6.5

Type : Swale

Sheringham Recyc	cling Centre:					Date:				
Surface Water						11/08/2023				
1 in 2, 30 (+40	0% CC) and 10	0 (+45% CC) F	RP			Designed by:		Checked by:	Approved By:	
						RO				
Report Details:	ater Control Re	oulto				Stantec UK Ltd: 3rd Floor, Stat	ion Road Car			
Storm Phase:		suits				CB1 2JH	ion Road, Cal	nbridge		
				Desident			Tatal Oatflam			
Time (mins)	Total Inflow (L/s)	US Depth (m)	DS Depth (m)	Resident Volume(m ³)	Flooded	Infiltration (L/s)	Total Outflow (L/s)			
135	0.1	0.157	0.422	29.879	0.881	(L/S) 6.4	(L/S) 6.4			
133	0.1	0.144	0.422	28.022	0.381	6.2	6.2			
145	0.1	0.144	0.403	26.277	0.000	6.0	6.0			
145	0.0	0.132	0.385	24.489	0.000	5.8	5.8			
155	0.0	0.108	0.373	22.772	0.000	5.6	5.6			
160	0.0	0.095	0.360	21.154	0.000	5.4	5.4			
165	0.0	0.083	0.348	19.573	0.000	5.2	5.2			
170	0.0	0.071	0.336	18.050	0.000	5.0	5.0			
175	0.0	0.058	0.323	16.604	0.000	4.8	4.8			
180	0.0	0.046	0.311	15.224	0.000	4.6	4.6			
185	0.0	0.034	0.299	13.887	0.000	4.4	4.4			
190	0.0	0.021	0.286	12.600	0.000	4.2	4.2			
195	0.0	0.009	0.274	11.421	0.000	4.0	4.0			
200	0.0	0.000	0.262	10.247	0.000	3.4	3.4			
205	0.0	0.000	0.249	9.244	0.000	3.3	3.3			
210	0.0	0.000	0.237	8.291	0.000	3.1	3.1			
215	0.0	0.000	0.225	7.385	0.000	2.9	2.9			
220	0.0	0.000	0.213	6.528	0.000	2.8	2.8			
225	0.0	0.000	0.200	5.721	0.000	2.6	2.6			
230	0.0	0.000	0.188	5.040	0.000	2.2	2.2			
235	0.0	0.000	0.176	4.409	0.000	2.0	2.0			
240	0.0	0.000	0.164	3.813	0.000	1.9	1.9			

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023				
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:		
	RO				
Report Details:	Stantec UK Ltd:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Car				
	CB1 2JH				

Rain Garden

Critical by Return Period: FEH: 100 years: Increase Rainfall (%): +45: 60 mins: Winter

Tables

Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Outlet(L/s)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
5	0.1	0.400	0.400	0.000	0.000	0.0	0.1	0.1
10	0.2	0.403	0.400	0.008	0.000	0.0	0.1	0.1
15	0.2	0.406	0.400	0.017	0.000	0.0	0.2	0.2
20	0.3	0.409	0.402	0.032	0.000	0.0	0.2	0.2
25	0.6	0.419	0.418	0.107	0.000	0.0	0.2	0.2
30	0.9	0.447	0.447	0.268	0.000	0.0	0.2	0.2
35	0.9	0.482	0.482	0.473	0.000	0.0	0.2	0.2
40	0.6	0.511	0.511	0.636	0.000	0.0	0.2	0.2
45	0.3	0.524	0.524	0.711	0.000	0.0	0.2	0.2
50	0.2	0.526	0.526	0.721	0.000	0.0	0.2	0.2
55	0.2	0.523	0.523	0.708	0.000	0.0	0.2	0.2
60	0.1	0.518	0.518	0.681	0.000	0.0	0.2	0.2
65	0.0	0.509	0.509	0.629	0.000	0.0	0.2	0.2
70	0.0	0.497	0.497	0.557	0.000	0.0	0.2	0.2
75	0.0	0.484	0.484	0.486	0.000	0.0	0.2	0.2
80	0.0	0.472	0.472	0.415	0.000	0.0	0.2	0.2
85	0.0	0.460	0.460	0.344	0.000	0.0	0.2	0.2
90	0.0	0.448	0.447	0.273	0.000	0.0	0.2	0.2
95	0.0	0.435	0.435	0.204	0.000	0.0	0.2	0.2
100	0.0	0.423	0.423	0.132	0.000	0.0	0.2	0.2
105	0.0	0.411	0.411	0.061	0.000	0.0	0.2	0.2
110	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
115	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
120	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023					
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:			
	RO					
Report Details:	Stantec UK Ltd:					
Type: Stormwater Control Results	3rd Floor, Station Road, Car					
Storm Phase: Phase	CB1 2JH					

Bioretention Basin

Critical by Return Period: FSR: 2 years: Increase Rainfall (%): +0: 30 mins: Winter

Tables

Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.800	0.800	0.000	0.000	0.0	0.0
5	4.0	0.811	0.800	0.266	0.000	0.6	0.6
10	9.8	0.848	0.800	2.058	0.000	1.4	1.4
15	27.5	0.890	0.835	6.783	0.000	2.3	2.3
20	30.1	0.947	0.944	14.982	0.000	2.7	2.7
25	13.6	0.996	0.997	20.980	0.000	2.9	2.9
30	6.5	1.008	1.008	22.881	0.000	3.0	3.0
35	1.4	1.003	1.003	23.154	0.000	3.1	3.1
40	0.2	0.989	0.989	22.405	0.000	3.1	3.1
45	0.1	0.974	0.974	21.518	0.000	3.1	3.1
50	0.0	0.959	0.959	20.614	0.000	3.1	3.1
55	0.0	0.943	0.943	19.703	0.000	3.1	3.1
60	0.0	0.927	0.927	18.788	0.000	3.0	3.0

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Cambridge			
Storm Phase: Phase	CB1 2JH	-		

Infiltration Swale

Critical by Return Period: FSR: 2 years: Increase Rainfall (%): +0: 30 mins: Winter

Tables

Time (mins)	Total Inflow (L/s)	US Depth	DS Depth	Resident Volume(m ³)	Flooded Volume (m ³)	Infiltration	Total Outflow
		(m)	(m)	. ,	. ,	(L/s)	(L/s)
0	0.0	0.000	0.000	0.000	0.000	0.0	0.0
5	2.0	0.020	0.000	0.172	0.000	0.7	0.7
10	4.1	0.046	0.000	0.811	0.000	1.2	1.2
15	11.4	0.075	0.004	2.587	0.000	2.4	2.4
20	11.6	0.081	0.136	5.245	0.000	3.1	3.1
25	4.3	0.054	0.196	6.693	0.000	3.3	3.3
30	2.2	0.033	0.206	6.677	0.000	3.2	3.2
35	0.1	0.013	0.202	6.082	0.000	3.0	3.0
40	0.0	0.000	0.191	5.231	0.000	2.5	2.5
45	0.0	0.000	0.179	4.585	0.000	2.1	2.1
50	0.0	0.000	0.167	3.983	0.000	2.0	2.0
55	0.0	0.000	0.155	3.415	0.000	1.8	1.8
60	0.0	0.000	0.143	2.881	0.000	1.7	1.7

Type : Swale

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:	-		
Type: Stormwater Control Results	3rd Floor, Station Road, Cambridge			
51	CB1 2JH	-		

Rain Garden

Critical by Return Period: FSR: 2 years: Increase Rainfall (%): +0: 15 mins: Winter

Type : Bioretention

Tables

Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Outlet(L/s)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
5	0.1	0.400	0.400	0.000	0.000	0.0	0.1	0.1
10	0.5	0.411	0.402	0.037	0.000	0.0	0.2	0.2
15	0.1	0.410	0.410	0.055	0.000	0.0	0.2	0.2
20	0.0	0.401	0.401	0.005	0.000	0.0	0.2	0.2
25	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
30	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Car			
Storm Phase: Phase	CB1 2JH	-		

Bioretention Basin

Critical by Return Period: FSR: 30 years: Increase Rainfall (%): +40: 30 mins: Winter

Type : Bioretention

Tables

Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.800	0.800	0.000	0.000	0.0	0.0
5	12.1	0.846	0.800	1.117	0.000	1.1	1.1
10	26.7	0.891	0.829	6.441	0.000	2.3	2.3
15	74.6	1.005	0.998	20.290	0.000	2.9	2.9
20	80.3	1.191	1.191	43.166	0.000	3.7	3.7
25	35.0	1.309	1.309	59.974	0.000	4.2	4.2
30	16.8	1.345	1.345	65.908	0.000	4.4	4.4
35	3.0	1.351	1.351	67.522	0.000	4.5	4.5
40	0.2	1.339	1.339	66.468	0.000	4.5	4.5
45	0.1	1.326	1.326	65.155	0.000	4.5	4.5
50	0.0	1.312	1.312	63.797	0.000	4.5	4.5
55	0.0	1.298	1.298	62.444	0.000	4.5	4.5
60	0.0	1.284	1.284	61.094	0.000	4.5	4.5

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Car			
Storm Phase: Phase	CB1 2JH	-		

Infiltration Swale

Critical by Return Period: FSR: 30 years: Increase Rainfall (%): +40: 30 mins: Winter

Tables

Time (mins)	Total Inflow (L/s)	US Depth (m)	DS Depth (m)	Resident Volume(m ³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.000	0.000	0.000	0.000	0.0	0.0
5	5.6	0.051	0.000	0.616	0.000	1.0	1.0
10	10.9	0.074	0.001	2.592	0.000	2.4	2.4
15	30.6	0.129	0.154	7.893	0.000	3.6	3.6
20	31.0	0.137	0.295	15.913	0.000	4.8	4.8
25	11.3	0.104	0.356	20.781	0.000	5.4	5.4
30	5.8	0.101	0.364	21.684	0.000	5.5	5.5
35	0.2	0.093	0.359	20.951	0.000	5.4	5.4
40	0.1	0.081	0.347	19.402	0.000	5.2	5.2
45	0.1	0.069	0.334	17.906	0.000	5.0	5.0
50	0.0	0.057	0.322	16.446	0.000	4.8	4.8
55	0.0	0.045	0.310	15.052	0.000	4.5	4.5
60	0.0	0.032	0.297	13.722	0.000	4.3	4.3

Type : Swale

52/56

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Car			
Storm Phase: Phase	CB1 2JH	-		

Rain Garden

Critical by Return Period: FSR: 30 years: Increase Rainfall (%): +40: 30 mins: Winter

Tables

Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Outlet(L/s)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
5	0.1	0.400	0.400	0.001	0.000	0.0	0.1	0.1
10	0.3	0.407	0.400	0.021	0.000	0.0	0.2	0.2
15	0.8	0.420	0.419	0.111	0.000	0.0	0.2	0.2
20	0.8	0.449	0.449	0.281	0.000	0.0	0.2	0.2
25	0.3	0.465	0.465	0.373	0.000	0.0	0.2	0.2
30	0.2	0.464	0.464	0.367	0.000	0.0	0.2	0.2
35	0.0	0.455	0.455	0.319	0.000	0.0	0.2	0.2
40	0.0	0.443	0.443	0.249	0.000	0.0	0.2	0.2
45	0.0	0.431	0.431	0.179	0.000	0.0	0.2	0.2
50	0.0	0.419	0.419	0.107	0.000	0.0	0.2	0.2
55	0.0	0.406	0.406	0.036	0.000	0.0	0.2	0.2
60	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Car			
Storm Phase: Phase	CB1 2JH	-		

Bioretention Basin

Critical by Return Period: FSR: 100 years: Increase Rainfall (%): +45: 30 mins: Winter

Tables

Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.800	0.800	0.000	0.000	0.0	0.0
5	16.8	0.858	0.800	1.651	0.000	1.2	1.2
10	36.2	0.910	0.882	9.058	0.000	2.4	2.4
15	100.6	1.074	1.069	28.065	0.000	3.1	3.1
20	108.7	1.308	1.308	59.136	0.000	4.2	4.2
25	47.1	1.454	1.454	82.255	0.000	4.8	4.8
30	21.9	1.498	1.498	90.393	0.000	5.1	5.1
35	2.3	1.506	1.506	92.422	0.000	5.1	5.1
40	0.4	1.494	1.494	91.102	0.000	5.2	5.2
45	0.3	1.482	1.482	89.654	0.000	5.2	5.2
50	0.3	1.469	1.469	88.195	0.000	5.2	5.2
55	0.3	1.456	1.456	86.732	0.000	5.2	5.2
60	0.3	1.443	1.443	85.258	0.000	5.2	5.2

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:			
Type: Stormwater Control Results	3rd Floor, Station Road, Cambridge			
Storm Phase: Phase	CB1 2JH			

Infiltration Swale

Critical by Return Period: FSR: 100 years: Increase Rainfall (%): +45: 30 mins: Winter

Tables

Time (mins)	Total Inflow	US Depth	DS Depth	Resident	Flooded	Infiltration	Total Outflow
rine (nins)	(L/s)	(m)	(m)	Volume(m ³)	Volume (m ³)	(L/s)	(L/s)
0	0.0	0.000	0.000	0.000	0.000	0.0	0.0
5	7.6	0.062	0.000	0.880	0.000	1.2	1.2
10	14.7	0.088	0.016	3.641	0.000	2.7	2.7
15	41.1	0.151	0.205	11.003	0.000	4.2	4.2
20	41.9	0.160	0.353	22.054	0.000	5.6	5.6
25	15.2	0.154	0.415	28.936	0.610	6.3	6.3
30	7.8	0.161	0.425	30.436	1.027	6.4	6.4
35	0.1	0.155	0.421	29.722	0.843	6.3	6.3
40	0.1	0.143	0.408	27.875	0.344	6.2	6.2
45	0.1	0.131	0.396	26.074	0.000	6.0	6.0
50	0.0	0.119	0.384	24.323	0.000	5.8	5.8
55	0.0	0.106	0.372	22.634	0.000	5.6	5.6
60	0.0	0.094	0.359	21.001	0.000	5.4	5.4

Type : Swale

Sheringham Recycling Centre: Surface Water Drainage	Date: 11/08/2023			
1 in 2, 30 (+40% CC) and 100 (+45% CC) RP	Designed by:	Checked by:	Approved By:	
	RO			
Report Details:	Stantec UK Ltd:	-		
Type: Stormwater Control Results	3rd Floor, Station Road, Cambridge			
Storm Phase: Phase CB1 2JH				

Rain Garden

Critical by Return Period: FSR: 100 years: Increase Rainfall (%): +45: 30 mins: Winter

Tables

Time (mins)	Total Inflow (L/s)	US Depth (Ponding Area)(m)	DS Depth (Ponding Area)(m)	Total Resident Volume(m³)	Flooded Volume (m ³)	Outlet(L/s)	Infiltration (L/s)	Total Outflow (L/s)
0	0.0	0.400	0.400	0.000	0.000	0.0	0.0	0.0
5	0.2	0.402	0.400	0.005	0.000	0.0	0.1	0.1
10	0.4	0.410	0.402	0.034	0.000	0.0	0.2	0.2
15	1.1	0.432	0.432	0.182	0.000	0.0	0.2	0.2
20	1.1	0.476	0.476	0.435	0.000	0.0	0.2	0.2
25	0.4	0.502	0.502	0.584	0.000	0.0	0.2	0.2
30	0.2	0.505	0.505	0.601	0.000	0.0	0.2	0.2
35	0.0	0.498	0.498	0.561	0.000	0.0	0.2	0.2
40	0.0	0.485	0.485	0.490	0.000	0.0	0.2	0.2
45	0.0	0.473	0.473	0.420	0.000	0.0	0.2	0.2
50	0.0	0.461	0.461	0.349	0.000	0.0	0.2	0.2
55	0.0	0.448	0.448	0.278	0.000	0.0	0.2	0.2
60	0.0	0.436	0.436	0.208	0.000	0.0	0.2	0.2

Appendix F Greenfield Runoff Calculations

Soils BFI Calculation

-

					50	-60 Station Road
				_		Cambridge
Client	Norfolk Cour	nty Council				Cambridgeshire
Job Title	Sheringham					CB1 2J⊦
Job No.	49868					
Method (1): From S			B of IH126			
	Fraction of site area		HOST classes	% in each HOST clas		7
Soil Association 1	1	551g	5	100	0.9	4
			0	0	0	4
			0	0	0	4
			0	0	0	4
				Total =	0.9	
	Fraction of site area		HOST classes	% in each HOST clas		-
Soil Association 2	0	0	0	0	0	4
			0	0	0	4
			0	0	0	4
			0	0 Total =	0	-
						4
	Fraction of site area	SOIL class	HOST classes	% in each HOST clas	BFI value	
Soil Association 3	0	0	0	0	0	7
			0	0	0	7
			0	0	0]
			0	0	0	
				Total =	0	1
Total =	- 1	Must add to one		•		-
	BFI =	0.90)	٦		
	UE RECORD					
Calculation Ref	Rev	Date	Prepared	Checked	Reviewed (Discipline	Approved (Project Director
					Lead)	

04/08/2023

-

SL

-

3rd Floor

-

-

FEH Greenfield Runoff

Per Hectare

Project Title Sheringham Waste Recycling Centre

49868

Project No

Methodology as set out in SuDS Manual 24.3.2

SUDS Manual Chapter 24

1 Retrieve FEH Catchment Information

Export catchment data from FEH CDROM as .csv file	e and save in FEH data	a export	
Catchment Descriptors	BFIHOST	0.900	see note 1
	SAAR	647.0	see note 1
	FARL	1.00	see note 2

Using 2008 QMED Equation

2 Derive QBAR (mean annual flood)

Define area	Site Area	0.4	ha	
	Applied Area	50.0	ha	see note 3
FEH Index Flood (SuDS Manual Equation 24.2)	QMED (Q ₂)	0.2	l/s	see note 4
Calculate QBAR by dividing QMED by 2yr growth factor	QBAR	0.2	l/s	see note 5

3 Select appropriate growth factors

FSR Hydrological Region	5
100yr Growth Curve Factor GQ ₁₀₀	3.56
30yr Growth Curve Factor GQ ₃₀	2.55
10yr Growth Curve Factor GQ ₁₀	1.65
2yr Growth Curve Factor GQ ₂	0.89
1yr Growth Curve Factor GQ1	0.87

(refer to FSR Hydrological Region tab)

4 Derive Flood Frequency

.

Greenfield Runoff per 1ha			
100yr Peak Runoff Rate	Q ₁₀₀	0.6	l/s
30yr Peak Runoff Rate	Q ₃₀	0.4	l/s
10yr Growth Curve Factor	Q ₁₀	0.3	l/s
QBAR Peak Runoff Rate	QBAR	0.2	l/s
2yr Peak Runoff Rate	Q ₂	0.2	l/s
1yr Peak Runoff Rate	Q 1	0.2	l/s

Q ₁₀₀	1.68	l/s/ha
Q ₃₀	1.20	l/s/ha
Q ₁₀	0.78	l/s/ha
Q _{BAR}	0.47	l/s/ha
Q ₂	0.42	l/s/ha
Q ₁	0.41	l/s/ha

DOCUMENT ISSUE RECORD

Rev	Comments	Prepared	Date	Checked	Date
-	Greenfield rate for Planning Submission	SL	10/08/2023	-	-

Greenfield Volume Calculations

Rural Runoff C		
	Greenfield Volume	
Aicro	Greenfield Runoff Volume Input	Results
rainage	Rainfall Model FEH Rainfall V Return Period (Years) 100	PR%
	Storm Duration (mins) 360	4.93
		Greenfield Runo
	Version 2013 V Point	Volume (m³)
	Site GB 616285 341035 TG 16285 41035 Area (na) 0.370 SAAR (mm) Map 647	14.021
	CWI 95.460	
IH 124	SPR Host 6.690	
ICP SUDS	Areal Reduction Factor 1.00 URBEXT 1990 V 0.0000	
ADAS 345		
FEH		
ReFH2	-	
eenfield Volume eenfield Volume		
(ReFH2)		
Rural Runoff C	OK Select required Rainfall Model from the list	Cancel Help
Rural Runoff C	Select required Rainfall Model from the list	
	Select required Rainfall Model from the list	
	Select required Rainfall Model from the list	
	Select required Rainfall Model from the list alculator Greenfield Volume	Results
	Select required Rainfall Model from the list Instar 0.252 0.252 0.040 0.040 0.04 alculator Greenfield Volume Greenfield Runoff Volume Input	X
	Select required Rainfall Model from the list Select required Rainfall Model from the list alculator Greenfield Volume Greenfield Runoff Volume Input Rainfall Model FEH Rainfall Years) 30	Results PR% 2.43 Greenfield Runoff
	Select required Rainfall Model from the list Batter 10.2821 1E4 00.500 0.040 0.01 0.01 0.01 0.01 0.01 0.01 0	Results PR% 2.43 Greenfield Runoff Volume (m?)
	Select required Rainfall Model from the list Careenfield Volume Greenfield Runoff Volume Input Rainfall Model FEH Rainfall Return Period (Years) 30 Storm Duration (mins) 360 Version 2013 V Point	Results PR% 2.43 Greenfield Runoff
icro ainage	Select required Rainfall Model from the list alculator Greenfield Volume Greenfield Runoff Volume Input Rainfall Model FEH Rainfall Return Period (Years) 30 Stom Duration (mins) 360 360 Version 2013 V Point Site GB 616285 341035 TG 16285 41035 Area (ha) 0.370 SAAR (mm) Map 647 CWI 95.460	Results PR% 2.43 Greenfield Runoff Volume (m?)
icro ainage	Select required Rainfall Model from the list Select required Rainfall Model from the list alculator Greenfield Volume Greenfield Runoff Volume Input Rainfall Model FEH Rainfall Return Period (Years) 30 Stom Duration (mins) 360 Version 2013 Point Ste GB 616285 341035 TG 16285 41035 Area (ha) 0.370 SARR (mm) Map 647 CWI 95.460 SPR Host 6.690	Results PR% 2.43 Greenfield Runoff Volume (m?)
IH 124 ICP SUDS	Select required Rainfall Model from the list alculator Greenfield Volume Greenfield Runoff Volume Input Rainfall Model FEH Rainfall Retum Period (Years) 30 Stom Duration (mins) 360 360 Version 2013 V Point Site GB 616285 341035 TG 16285 41035 Area (ha) 0.370 SAAR (mm) Map 647 CWI 95.460 SPR Host 6.690 Areal Reduction Factor 1.00 URBEXT 1990 V 0.0000	Results PR% 2.43 Greenfield Runoff Volume (m?)
IH 124 ICP SUDS ADAS 345	Select required Rainfall Model from the list Select required Rainfall Model from the list alculator Greenfield Volume Greenfield Runoff Volume Input Rainfall Model FEH Rainfall Return Period (Years) 30 Stom Duration (mins) 360 Version 2013 Point Ste GB 616285 341035 TG 16285 41035 Area (ha) 0.370 SARR (mm) Map 647 CWI 95.460 SPR Host 6.690	Results PR% 2.43 Greenfield Runoff Volume (m?)
IH 124 ICP SUDS ADAS 345 FEH	Select required Rainfall Model from the list alculator Greenfield Volume Greenfield Runoff Volume Input Rainfall Model FEH Rainfall Retum Period (Years) 30 Stom Duration (mins) 360 360 Version 2013 V Point Site GB 616285 341035 TG 16285 41035 Area (ha) 0.370 SAAR (mm) Map 647 CWI 95.460 SPR Host 6.690 Areal Reduction Factor 1.00 URBEXT 1990 V 0.0000	Results PR% 2.43 Greenfield Runoff Volume (m?)
IH 124 ICP SUDS ADAS 345	Select required Rainfall Model from the list alculator Greenfield Volume Greenfield Runoff Volume Input Rainfall Model FEH Rainfall Retum Period (Years) 30 Stom Duration (mins) 360 360 Version 2013 V Point Site GB 616285 341035 TG 16285 41035 Area (ha) 0.370 SAAR (mm) Map 647 CWI 95.460 SPR Host 6.690 Areal Reduction Factor 1.00 URBEXT 1990 V 0.0000	Results PR% 2.43 Greenfield Runoff Volume (m?)
IH 124 ICP SUDS ADAS 345 FEH ReFH2 eenfield Volume	Select required Rainfall Model from the list alculator Greenfield Volume Greenfield Runoff Volume Input Rainfall Model FEH Rainfall Return Period (Years) 30 Storn Duration (mins) 360 Version 2013 V Point Ste GB 616285 341035 TG 16285 41035 Area (ha) 0.370 SAR (mm) Map Grean Reduction Factor 1.00 URBEXT 1990 Calculate	Results PR% 2.43 Greenfield Runoff Volume (m?)
IH 124 ICP SUDS ADAS 345 FEH	Select required Rainfall Model from the list alculator Greenfield Volume Greenfield Runoff Volume Input Rainfall Model FEH Rainfall Return Period (Years) 30 Storn Duration (mins) 360 Version 2013 V Point Ste GB 616285 341035 TG 16285 41035 Area (ha) 0.370 SAR (mm) Map Grean Reduction Factor 1.00 URBEXT 1990 Calculate	Results PR% 2.43 Greenfield Runoff Volume (m?)
IH 124 ICP SUDS ADAS 345 FEH ReFH2 eenfield Volume eenfield Volume	Select required Rainfall Model from the list alculator Greenfield Volume Greenfield Runoff Volume Input Rainfall Model FEH Rainfall Return Period (Years) 30 Storn Duration (mins) 360 Version 2013 V Point Ste GB 616285 341035 TG 16285 41035 Area (ha) 0.370 SAR (mm) Map Grean Reduction Factor 1.00 URBEXT 1990 Calculate	Results PR% 2.43 Greenfield Runoff Volume (m?)

	Greenfield Volume			
Aicro Drainage	Greenfield Runoff Volume Input			Results
sonage	Rainfall Model FEH Rainfall 🗸	Return Period (Years) 2	7	PR%
		Storm Duration (mins) 360		0.00
	Version 2013 V Point			Greenfield Runoff Volume (m³)
	Site GB 616285 341035 TG 16285 41035	Area (ha) 0.370		0.000
		SAAR (mm) Map 647		
IH 124		CWI 95.460		
		SPR Host		
ICP SUDS	Areal Reduction Factor 1.00	URBEXT 1990 ~ 0.0000		
ADAS 345		Calculate		
FEH				
ReFH2				
reenfield Volume				
reenfield Volume (ReFH2)				
			ОК С	ancel Help

Appendix G Site Investigation Report - June 2022

Prepared by: Norfolk Partnership Laboratory, Norse Eastern Ltd, Martineau Lane, Norwich, Norfolk, NR1 2SG Telephone (01603) 578389

> Site Investigation Factual Report Sheringham Household Waste Recycling Centre Holt Road, Sheringham Norfolk 102894 June 2022

Client: Community & Environmental Services Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG **NR26 8WB**

Prepared by: Norfolk Partnership Laboratory, Norse Eastern Ltd, Martineau Lane, Norwich, Norfolk, NR1 2SG Telephone (01603) 578389

Factual Report Sheringham Household Waste Recycling Centre Holt Road, Sheringham Norfolk 102894 June 2022

This document has been prepared for the titled project or named part thereof and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authority of Norfolk Partnership Laboratory being obtained. Norfolk Partnership Laboratory accepts no responsibility or liability for the consequence of this document being used for a purpose other than the purposes for which it was commissioned. Any person using or relying on the document for such other purpose agrees, and will by such use or reliance be taken to confirm his agreement to indemnify Norfolk Partnership Laboratory for all loss or damage resulting there from. Norfolk Partnership Laboratory accepts no responsibility or liability for this document to any party other than the person by whom it was commissioned. To the extent that this report is based on information supplied by other parties, Norfolk Partnership Laboratory accepts no liability for any loss or damage suffered by the client, whether contractual or tortious, stemming from any conclusions based on data supplied by parties other than Norfolk Partnership Laboratory and used by Norfolk Partnership Laboratory in preparing this report.

1.0	Executive Summary6
2.0	Introduction7
2.1	Scope and objectives of report7
2.2	Description of project7
2.3	Geotechnical category of the project8
2.4	Other Relevant Information8
3.0	Existing Information9
3.1	Previous investigations9
3.2	Geology9
3.3	Hydrology and Hydrogeology10
4.0	Fieldwork11
4.1	Description of Fieldwork11
4.2	Ground Investigation Report11
4.3	Geophysical Surveys11
4.4	Pile Tests11
4.5	Other Field Work11
5.0	Investigation Results13
5.1	Ground conditions13
5.2	Engineering properties15
5.3	Geoenvironmental testing19
5.4	Infiltration Testing20
5.5	In Situ Tests20
5.6	Groundwater observations20
5.7	Ground gas observations20

Appendices

- Appendix A Site Location Plan.
- Appendix B Geology Plans.
- Appendix C Trial Pit Location Plan.
- Appendix D Borehole Logs.
- Appendix E Trial Pit Logs.
- Appendix F Geotechnical Test Results.
- Appendix G Geoenvironmental Test Results.
- Appendix H Infiltration Test Results

ii) Distribution

Community and Environmental Services	1 сору
Norfolk Partnership Laboratory	1 сору

1.0 Executive Summary

Site Location	Land located north of the eastern end of the access road to Sheringham Lougebold Waste Resulting Contro (HWRC) on the A148 Holt Read in			
	Household Waste Recycling Centre (HWRC) on the A148 Holt Road in Sheringham.			
	National Grid Reference 616300,341025			
Current Land Use	The site comprises arable land.			
Historical Land Use	• The site is shown as a field on the Tithe Map (1836-1850), as it is currently.			
Proposed End Use	 It is proposed to construct 	ct a new Household Waste	e Recycling Centre.	
Anticipated	Chrono-stratigraphic	Litho-stratigaphic	Thickness (m)	
Geology	system	Unit		
	Pleistocene	Britons Lane Sand and Gravel	0-40m	
	Pleistocene	Bacton Green Till	10-15m	
	Pleistocene	Wroxham Crag	20m	
Geology		Formation		
Encountered	 Topsoil – encountered in all Trial Pits and Borehole 09 to a maximum depth of 0.60m bgl, comprising brown, dark brown or dark greyish brown sandy, slightly gravelly Topsoil. Head – encountered in all TP03 to a maximum depth of 0.60m bgl, comprising of dark brown, slightly gravelly, sandy Silt. Brittons Lane Sand and Gravel - encountered in all Trial Pits and Borehole 09, comprising of brown, light brown, orangey brown, yellowish brown and orange gravelly, silty fine to coarse Sand, brown, orangey brown or light brown clayey sandy gravelly Silt and firm orangey brown sandy silty Clay. The maximum depth observed was 8.50m bgl in BH09 Bacton Green Till - encountered Borehole 09, comprising of soft to firm and stiff light brown slightly sandy, slightly gravelly Clay. The maximum depth observed was 15.45m bgl. Crag No encountered during this investigation. 			
Groundwater	Not encountered to 15.45 metres depth. Hydrogeological Map of East Anglia indicates that the water table is at approximately 45m AOD, therefore 44m BGL.			
Contamination Issues	None encountered			

Table 1: Executive Summary

2.0 Introduction

2.1 Scope and objectives of report

The objective of this Factual Report is to provide geotechnical information for a proposed new residential development, in particular for drainage and pavement design.

The report undertakes an assessment of all geotechnical aspects of the scheme, including:

• The results of recent investigation.

This report is written to conform to the requirements of Eurocode 7: Geotechnical Design, Part 1: General Rules, BS EN 1997-1:2004.

Norfolk Partnership Laboratory provides a service within Norse Highways, a division of Norse Eastern Ltd.

The purpose of this investigation was to ascertain ground conditions so that options for the design of a drainage system can be considered and highways designed.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Although every effort has been made to give a true assessment of the condition of the site, it is possible that different ground conditions may exist in parts of the site that is neither recorded nor visible.

2.2 Description of project

The project is to construct a new household waste recycling centre to replace the existing one located just to the south west. The site is located 3.5 km to the south of Sheringham. The site is centred approximately on Ordnance Survey Grid Reference 616300 341025. The site location is shown on the plan in Appendix A.

2.2.1 Current Land Use

The land is currently agricultural and is in set aside.

2.2.2 Surrounding Land Use

The land is bounded to the north west by an arable field and agricultural storage area and to the south east by an arable field. South of the site is the service road leading to Sheringham Household Waste Recycling Centre, and beyond that the A148 with further arable fields on the other side. To the north, beyond the remainder of the arable field in which the site is situated, is a wooded area which forms part of the Hilltop Outdoor Centre.

2.2.3 Potential Sources of Contamination

The potential sources of contamination and background levels of any existing contamination were covered in previous reports by others, comments are made on any potential contamination encountered.

2.3 Geotechnical category of the project

The project is classed as Geotechnical Category 2 under Eurocode 7, which is defined as conventional types of structure and foundations, with no exceptional risk or difficult soil or loading conditions.

2.4 Other Relevant Information

2.4.1 Natural and manmade Cavities

This site is outside the area of known mining activity.

2.4.2 Landslides

Landslides do not pose a major risk at this site.

2.4.3 Erosion and Deposition

No erosion or deposition features were noted within the site.

2.4.4 Seismic

There are no known historical fault lines that affect the site.

3.0 Existing Information

3.1 Previous investigations.

There are no known previous investigations associated with this site.

3.2 <u>Geology</u>

According to British Geological Survey mapping, the geology of the region may be summarised as follows:

Chrono-	Litho-		Thickness
stratigraphic system	stratigraphic Unit	Summary Description	Thickness (m)
Holocene	Head	Head comprises poorly sorted and poorly stratified deposits formed by the mass movement of superficial materials on sloping ground. The mass movement processes include hillwash and soil creep as well as solifluction, an important mode of sediment transport in periglacial conditions. Head occurs as a veneer up to a metre or so thick lining the floors and/or lower flanks of the tributary valleys of the district. Head ranges from yellow-brown to dark brown to grey-black and comprises mainly sand with varying proportions of clay, silt, gravel of pebble grade (mostly flint) and sporadic larger rock clasts.	Variable
Pleistocene	Britons Lane Sand and Gravel	Briton's Lane Sand and Gravel member consists mainly of planer cross bedding that comprises of gravels and cobbles, with lenses of sand. Lithologically the deposits have a high percentage of flint (78-85%). The parent rock of the Briton's Lane Sand and Gravel is the Briton's Lane Formation, which extends throughout most of north Norfolk. The underlying boundary is well defined with sands and gravels upon the erosional surface of the Sheringham Cliffs Formation.	0-40
Pleistocene	Bacton Green Till	The Bacton Green Till Member forms an extensive diamicton complex that consists of a stratified assemblage of stony diamicton with beds/laminae of sorted material including sand, silt and clay. It has been interpreted as being a subaqueous till deposited by melt-out and gravity flows (Lunkka, 1994; Lee et al., 2004). The calcium carbonate content of the matrix of the diamicton beds is typically within the region of 10- 12% and is some 20% lower than tills from the underlying Lowestoft Formation.	10-15
Pleistocene	Wroxham Crag	The Wroxham Crag was formed when, after a long period of standing above sea level, the area was submerged by a marine transgression caused by movements of the sea floor during a period of coastal instability in the region. The deposits are a variable series of yellowish or reddish brown sands, laminated clays and pebbly gravels. In places they are highly fossiliferous, shell fragments being especially prolific.	5-60

Table 2: Geological succession of the area of the scheme (based on available literature)

Geology plan extracts from the BGS web site can be found in Appendix B.

3.3 <u>Hydrology and Hydrogeology</u>

According to the Regional Hydrogeology Map of Northern East Anglia, the Norwich Crag is the principle aquifer for the area. The estimated minimum hydrostatic level of the Crag water table in the vicinity of the site is 45 metres above Ordnance Survey Datum. Ground level in the area is around 89 metres above Ordnance Survey Datum. Groundwater is therefore approximately 44 metres below existing ground level.

4.0 Fieldwork

4.1 Description of Fieldwork

As part of the current phase of work, the following investigation took place on the 4 to 6 April 2022, with the Trial pits being excavated on 4 April and the Borehole starting on 5 April.

Eight Trial Pits were excavated to a maximum depth of 3.10 metres. These are referred to as TP01 to TP08.

One Borehole was excavated to a depth of 15.45 metres. This is referred to as BH09

The location of the Trial Pits and Borehole are shown on the location plan in Appendix C.

Within this investigation a number of small, bulk and disturbed samples were taken from the holes, in accordance with BS5930: 2015+A1:2020. The number and depths of these samples along with the details of thickness of strata encountered are set out in Appendices D and E of this report.

4.2 Ground Investigation Report

All data regarding the recent intrusive ground investigation is contained within this report. The Borehole log is located in Appendix D while Trial Pit logs are located in Appendix E of this report

4.3 Geophysical Surveys

No geophysical surveys were carried out as part of this investigation other than Ground Penetrating Radar (GPR) and Cable Avoidance Tool (CAT) scanning for the location of underground utilities

4.4 Pile Tests

No pile testing was undertaken as part of the investigation.

4.5 Other Field Work

No other fieldwork was undertaken.

4.6 Laboratory Investigation

4.6.1 Description of Geotechnical Tests

A laboratory testing schedule were drawn up to assist classification of the soils and to determine their physical and chemical properties. Norfolk Partnership Laboratory is a UKAS TESTING laboratory No. 0920.

The following tests were carried out in-house: -

- a) The determination of Natural Moisture Content by oven drying (BS1377:1990:Part 2: Clause 3).
- b) The determination of Liquid Limit using the four point cone penetrometer method (BS 1377: 1990: Part 2: Clause 4).
- c) The determination of the Plastic Limit (BS1377: 1990: Part 2: Clause 5).
- d) The determination of Plasticity Index (BS 1377: 1990: Part 2: Clause 5).
- e) The determination of Particle Size Distribution by wet sieving (BS1377: 1990: Part 2: Clause 9.2).
- f) The determination of the Moisture Content / Density Relationship (BS1377: Part 4: 1990: Clause 3).
- g) The determination Moisture Condition Value (BS 1377: Part 4: Clause 5)

Copies of the geotechnical test results from the recent phase of investigation are contained within of Appendix F of this report.

4.6.2Description of Geoenvironmental Tests

- a) Suite ST: Determination of water soluble Ammonium, Chloride, Nitrate, Sulphate and Magnesium; acid soluble Sulphate and total Sulphur. (BRE Digest SD1).
- b) Standard screening suite (Suite SB): Total Sulphate, Boron, Water Soluble, Arsenic, Cadmium, Chromium III, Chromium VI, Copper, Lead, Mercury, Nickel, Selenium, Zinc, Acid Soluble Sulphide, Phenols (Monohydric), Total Cyanide, Elemental Sulphur, pH Value, PAH Total, Speciated PAH, Soil Organic Matter (SOM)
- c) Asbestos
- d) Speciated TPH (UKCWG)

5.0 Investigation Results

5.1 Ground conditions

Within this and the following section of the report the geological materials encountered are discussed in turn, and their geotechnical material properties assessed. The ground conditions and material properties derived then form the basis of the geotechnical design criteria described in the Geotechnical Design Report.

5.1.1 Topsoil

Topsoil was found as a surface deposit in all excavations. It is generally described as (common variations in brackets):

(Dark, greyish) brown slightly gravelly sandy silty TOPSOIL.

The thickness found was between 0.00 and 0.60 metres in BH09. A mean thickness of 0.33 metres was found to be present in Trial Pits 01 to 08. This material appears visually to be suitable for reuse.

5.1.2 Head

Head deposits were positively identified in TP03, beneath the Topsoil. It is described as:

Dark brown, slightly gravelly, sandy SILT.

This horizon was encountered at a depth of 0.35 metres with the base at 0.60 metres, giving a revealed thickness of 0.25 metres.

5.1.3 Britons Lane Sand and Gravel

The Britons Lane Sand and Gravel was encountered in all Trial Pits and BH09. This horizon was encountered below the Topsoil in all excavations except TP03 where it is encountered below the Head. It is described variously as (common variations in brackets) -

(Light, orangey, yellowish) brown or (yellowish, reddish) orange (very) silty, (slightly) gravelly fine to coarse (medium) SAND. Gravel is fine to medium angular to sub rounded flint.

or

Firm orangey brown, sandy, silty CLAY, with large lenses of firm to stiff, light brown, gravelly, very clayey SILT. Gravel is sub-angular to sub -rounded, fine and medium chalk and flint.

Or

(Light) brown (slightly gravelly, clayey) very sandy SILT. Gravel is sub-angular to rounded fine to medium chalk and flint, (with lenses of yellowish brown, fine and medium SAND).

This horizon was encountered at depths of between 0.30 metres in TPs 04, 06, 07 and 08 to 0.60 metres in TP03 and BH09. The base of the horizon was not proven in any of the Trial Pits but was proven in BH09 at 8.50 metres. The maximum revealed thickness was 7.90 metres in BH09.

5.1.3 Bacton Green Till

The Bacton Green Till was only encountered BH09. This horizon was encountered below the Britons Lane Sand and Gravel. It is described as (common variations in brackets) -

Stiff (soft to firm) light brown, slightly sandy, slightly gravelly CLAY. Gravel is subangular to sub-rounded, fine to medium chalk and flint, with pockets of orange sand. Occasional chalk boulders were also encountered.

This horizon was encountered at depths of between 0.85 metres and 15.45 metres. The base of the horizon was not proven.

5.2 Engineering properties

5.2.1Topsoil

Topsoil should be removed from beneath all road and housing foundations. Subject to verification it could either be reused on site or disposed of off-site.

5.2.2 Head

No geotechnical laboratory testing was carried out on the Head as part of this investigation. Head should be removed from beneath all road and housing foundations.

5.2.3 Britons Lane Sand and Gravel

The Britons Lane Sand and Gravel was encountered in all Trial pits and Borehole 9

Four Atterberg Limit test was undertaken on a sample from the Britons Lane Sand and Gravel.

The results are tabulated below:

Location	Depth (m)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Modified PI (%)	Moisture Content (%)	BS Classifi cation	NHBC Classifica tion
TP02	2.7	45	16	29	27	7.8	CI	Medium
TP03	0.6	26	18	8	7	17	CL	Non Shrinkable
TP03	2.7	47	16	31	27	27 23 CI Me		Medium
TP04	0.7	26	14	11	11	14	CL	Low

Table 3: Summary of Atterburg Limits in Britons Lane Sand and Gravel.

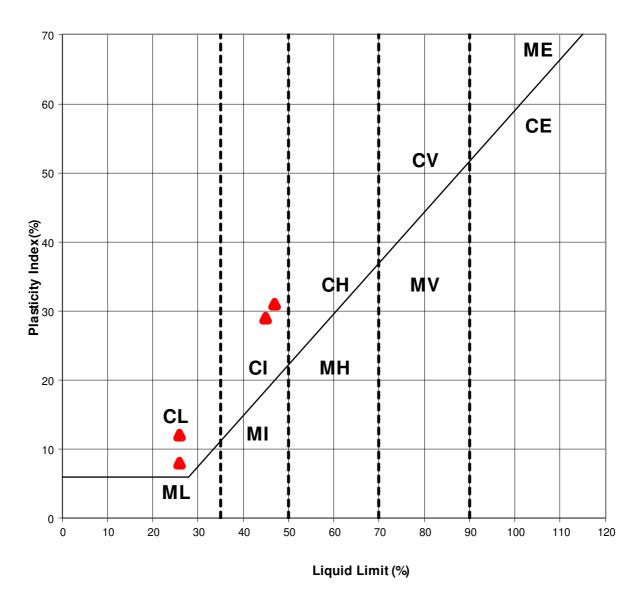


Figure 1: Atterberg Limits A line plot – Britons Lane Sand and Gravel

Twenty two Particle Size Distribution tests were carried out on the Briton's Lane Sand and Gravel and fall within the following grading envelope.

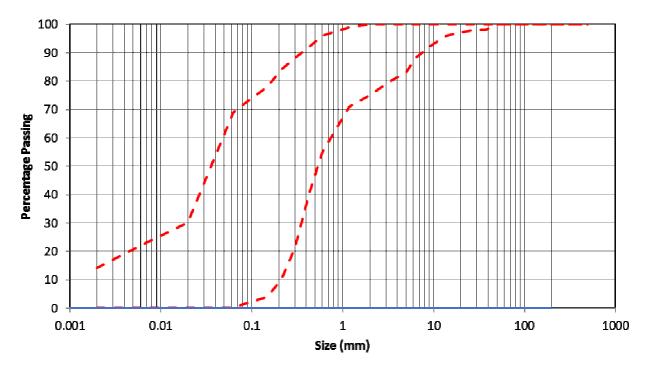


Figure 2: PSD envelope – Britons Lane Sand and Gravel.

Eight CBR tests were carried out in the Britons Lane Sand and Gravel as part of this investigation. Results are summarised below:

Location	Depth (m)	CBR (Top) (%)	CBR (Bottom) (%)	CBR (Design) (%)
TP01	0.70	14	16	15
TP02	0.70	18	22	21*
TP03	0.60	1.7	1.5	1.6
TP04	0.70	4.3	5.7	5.3*
TP05	0.70	10	15	14*
TP06	0.70	13	19	18*
TP07	0.60	13	16	15*
TP08	0.70	24	34	32*

*The design CBR calculation is outside the British Standard where top and bottom values are not within 10%.

Table 4: CBR summary – Britons Lane Sand and Gravel

The CBR values vary from 1.6% to 32%. It is recommended that a design CBR value of 5% is adopted for pavement design, this will however require further investigation of the area around TP03 to delineate both the vertical and horizontal extent of the soft spot. This should then be removed if present at formation and replaced with suitable material to achieve the design CBR value.

The samples were then tested at a series of moisture contents to establish the Dry Density/Moisture Content Relationship. The results are summarised below.

Location	Depth (m)	Max Dry Density (Mg/m ³)	Optimum Moisture Content (%)
TP01	1.80	1.72	16.6
TP02	0.70	1.89	12.9
TP03	0.60	1.87	10.0
TP04	0.70	2.01	10.5
TP05	1.70	1.83	15.8
TP06	0.70	1.73	6.7
TP07	1.70	1.66	7.4
TP08	1.70	1.73	8.0

Table 5: CBR summary – Britons Lane Sand and Gravel

5.2.3 Bacton Green Till

The Bacton Green Till was only encountered in Borehole 09.

No geotechnical laboratory testing was carried out on the Bacton Green Till as part of this investigation. Head should be removed from beneath all road and housing foundations.

5.3 Geoenvironmental testing

5.3.1 Geoenvironmental Soils testing

5.3.1 Samples tested

The schedule of geoenvironmental testing can be seen tabulated below.

Location	Depth (m)	Tests
1	0.1	Suite SB, Speciated TPH, Asbestos
1	0.7	Suite ST
2	0.1	Suite SB, Speciated TPH, Asbestos
2	1.4	Suite ST
3	0.1	Suite ST
3	0.6	Suite SB, Speciated TPH, Asbestos
4	0.1	Suite SB, Speciated TPH, Asbestos
4	0.7	Suite ST
5	0.1	Suite SB, Speciated TPH Asbestos
6	0.7	Suite SB, Speciated TPH, Asbestos
6	2.4	Suite ST
7	0.1	Suite SB, Speciated TPH, Asbestos
7	0.6	Suite ST
8	0.1	Suite SB, Speciated TPH, Asbestos
8	2.8	Suite ST
9	5.0 - 5.5	Suite ST

Table 6: Geoenvironmental soil test schedule summary

Suite SB = General contamination suite including testing for: Total Sulphate, Boron, Water Soluble, Arsenic, Cadmium, Chromium III, Chromium VI, Copper, Lead, Mercury, Nickel, Selenium, Zinc, Acid Soluble Sulphide, Phenols (Monohydric), Total Cyanide, Elemental Sulphur, pH Value, PAH Total, Speciated PAH, Soil Organic Matter (SOM).

Suite ST - Determination of water soluble Ammonium, Chloride, Nitrate, Sulphate and Magnesium; acid soluble Sulphate and total Sulphur. (BRE Digest SD1).

A total of eight samples were tested in accordance with BRE Special Digest 1 (SD1) (NPL Suite ST) and a further eight samples were tested as part of Suite SB to check for the presence of sulphates. Results are summarised below:

Determinant	No of tests	Min	Max	Characteristic value
рН	16	7.2	8.46	7.33
Ammonium (mg/l)	8	<1.0	1.27	1.26
Chloride (mg/l)	8	<7	<7	7
Nitrate (mg/l)	8	<0.4	13.3	7.4
Sulphate (Water sol) (mg/l)	16	<10	18	13
Sulphate (Acid sol) (%)	16	<0.02	0.03	0.03
Sulphur (%)	8	<0.01	0.02	0.02
Magnesium (mg/l)	8	<1	13	10.5

Table 7: BRE SD1 Result summary

Complete geoenvironmental test results are contained in Appendix G.

5.4 Infiltration Testing

Infiltration testing was carried out in two trial pits in accordance with BRE365. Three runs were carried out in all pits. Results are summarised below, full results can be found in Appendix H.

Location	Run 1 (m/sec)	Run 2 (m/sec)	Run 3 (m/sec)	Accepted result (m/sec)
TP07	8.0 x 10 ⁻⁵	4.8 x 10⁻⁵	4.2 x 10⁻⁵	4.2 x 10⁻⁵
TP08	6.5 x 10⁻⁵	4.8 x 10⁻⁵	3.5 x 10⁻⁵	3.5 x 10⁻⁵

 Table 8: Trial Pit Infiltration test summary

5.5 In Situ Tests

No in situ testing was carried out as part of this investigation.

5.6 Groundwater observations

No groundwater was encountered as part of this investigation.

5.7 Ground gas observations

No ground gas monitoring was carried out as part of this investigation.

Norfolk Partnership Laboratory

Site Investigation Section

This report was prepared under the direction of

Lead Engineer

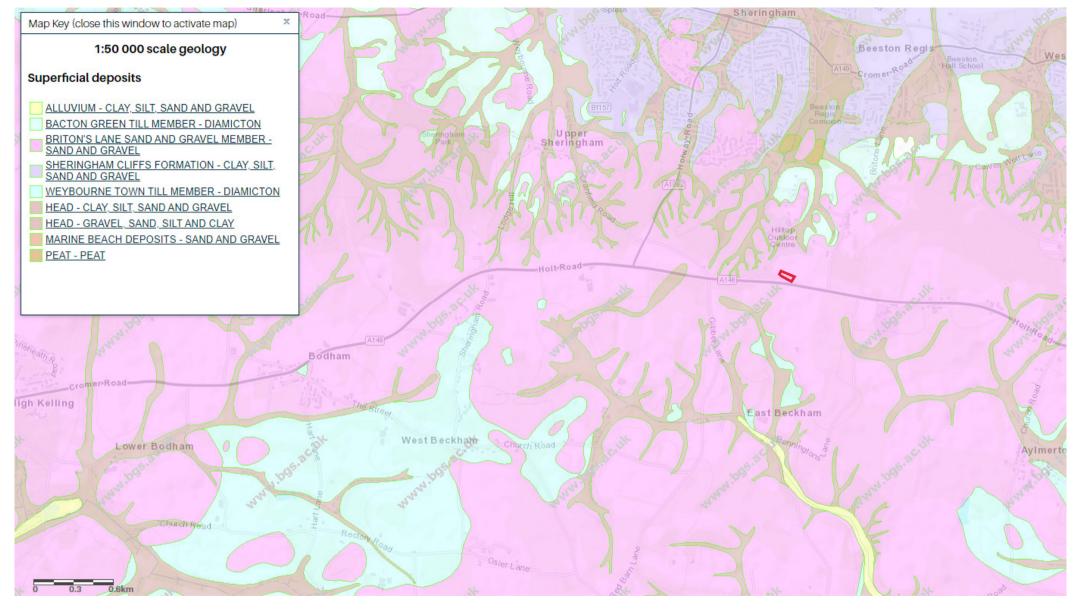
Ian Brown

Report checked by Geotechnical Services Manager

M L Bumstead MSC BSc FGS

Author of report

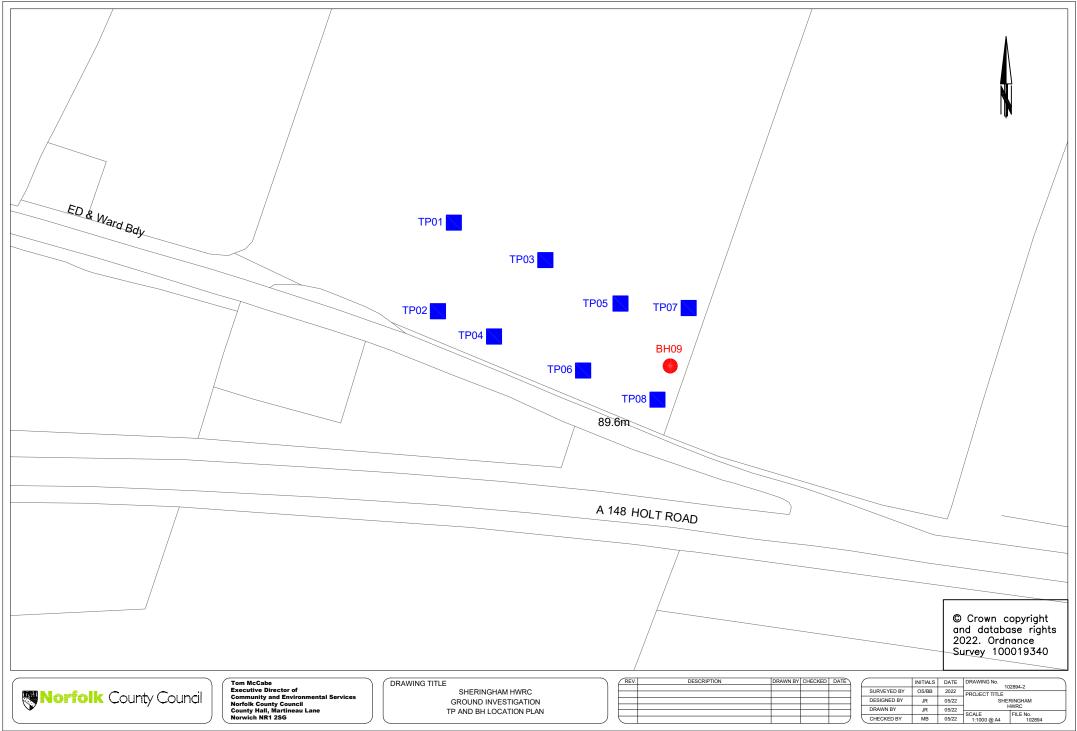
Project Engineer


Jill Robinson

Date: 09/06/2022

Appendix A

Appendix **B**



SUPERFICIAL GEOLOGY

BEDROCK GEOLOGY

Appendix C

Appendix D

Borehole Log

Scher	ne		Sheringham Recycling Centre	Job I	No.	10289	4	Bore	hole No	o. 09			
Carrie	d out	for	Community & Environmental Services	Date	Started	d 05/0	4/2022	Date	Finishe	ed 06/	04/202	22	
Rema			Dry		of Rig	CP		I				Logged by	Ala Glos
				Dept	-	15.4	5		nd Leve	el 88.	92	Drawn by	OP CR
								(m A	OD)			•	
				Co-o		6163	323 - 341					Checked by	/ ML
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Туре	mple No.	Field Tests	MC% LL		tory Tests MPI Org	g. CE
	Vvater			Legend	(m) 0.60 4.00 5.50 7.00			No. 02 01 02 01 03 04 05 06 07 08 09 10 11 12 13 14 15	Tooto	MC% LL			
			Structureless CHALK composed of cream slightly gravelly slightly clayey SILT. Gravel is weak, medium density, white and fine to medium and angular to sub-angular. Low flint content (Grade Dm). #ACTON GREEN TILL Soft to firm light brown, slightly sandy, slightly gravelly CLAY. Gravel is sub-angular to sub-rounded, fine and medium chalk with numerous chalk gravel, and orange sand pockets. BACTON GREEN TILL		8.50 8.70	- - - - - - - - - - - - - - - - - - -	•	16 17 19 18	S 9 → S 10 →				

Borehole Log

Sheet 2 of 2

										Shee	et 2 of 2			
Schen	ne		Sheringham Recycling Centre	Job I	No.	10289)4	Borel	hole N	0.	09			
Carrie	d out	for	Community & Environmental Services	Date	Starteo	d 05/0	4/2022	Date	Finish	ed	06/04/2	022		
Rema	rks:		Dry	Туре	of Rig	CP						Logge	d by	Alan Gloss op
				Dept	h (m)	15.4	5	Grou (m A0	nd Lev OD)	/el	88.92	Drawr	ı by	CRV
				Co-c	ords	6163	323 - 34100					Checke	ed by	MLB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Samp		Field Tests			oratory Test		
			Soft to firm light brown, slightly sandy, slightly gravelly CLAY. Gravel is sub-angular to sub-rounded, fine and medium chalk with numerous chalk gravel, and orange sand pockets. BACTON GREEN TILL Stiff light brown, slightly sandy, slightly gravelly CLAY. Gravel is sub-angular to sub-rounded, fine to medium chalk and flint., with pockets of orange SAND. BACTON GREEN TILL		11.00		Type 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3	3 22 4 25 6 8 27 9 30 1	s 24			L MPI	Org.	CBR

TRIAL PIT LOG

										Shee	et 1 of	1			
Scher	ne		Sheringham Recycling Centre	Job	No.	10289	4	Trial	Pit No	-	01				
Carrie	ed out	for	Community & Environmental Services	Date	e Starteo	d 08/0	4/2022	Date	Finish	ed	04/0	4/202	2		
Dimer	nsions	s:	0.45m x 1.60m	Туре	e of Rig	JCB	3CX						Logged	d by	MLB
Rema	rks:		Abandoned due to collapse. Dry.	Dep	th (m)	2.30		Grou (m A	ınd Le∖ OD)	/el	89.9	5	Drawn	by	CRV
				Co-o	ords	6162	266 - 3410)48				0	Checke	d by	MLB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Sam Type	nple No.	Field Tests	MC%		_aborat	ory Tests	s Org.	CBR
			Dark brown, slightly gravelly, sandy TOPSOIL. Gravel is angular to sub-angular, fine and medium flint. Brown, slightly gravelly, silty, fine and medium SAND. Gravel is angular to sub-rounded, fine and medium flint. BRITONS LANE SAND AND GRAVEL Orangey brown, fine and medium SAND. BRITONS LANE SAND AND GRAVEL Drangey brown, fine and medium SAND. BRITONS LANE SAND AND GRAVEL Orangey brown, fine and medium SAND. BRITONS LANE SAND AND GRAVEL		0.35			1 2 3							

TRIAL PIT LOG

										Snee	et 1 of	1			
Scher	ne		Sheringham Recycling Centre	Job	No.	10289	4	Trial I	Pit No	•	02				
Carrie	d out	for	Community & Environmental Services	Date	e Starteo	08/0	4/2022	Date	Finish	ed	04/04	1/202	2		
Dimer	nsions	S:	0.45m x 1.80m	Туре	e of Rig	JCB	3CX						Logge	d by	MLB
Rema	rks:		Dry and stable.	Dep	th (m)	3.00		Grou (m A0	nd Lev	/el	89.90)	Drawr	ı by	CRV
				Co-o	ords	6162	262 - 34102		,			(Checke	d by	MLB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Samp		Field Tests				ory Test		
\$777,\$\$77			Brown, slightly gravelly, sandy TOPSOIL. Gravel is angular to	~//////////////////////////////////////	(,		Туре	No.	10010	MC%	LL	PL	MPI	Org.	CBR
			Sub-angular, fine and medium flint.			-	ŧ	1							
			Yellowish brown, medium SAND. BRITONS LANE SAND AND GRAVEL		0.40	-	£								
			Yellowish brown gravelly, medium SAND. Gravel is sub-angular to rounded, fine and medium flint.		1.10	- 	Ŧ	2							
			BRITONS LANE SAND AND GRAVEL			-	•	3							
			Firm orangey brown, sandy, silty CLAY, with large lenses of firm to stiff, light brown, gravelly, very clayey SILT. Gravel is sub- angular to sub -rounded, fine and medium chalk and flint. BRITONS LANE SAND AND GRAVEL		1.75	- 2.00 									
			Firm to stiff light brown, slightly gravelly, clayey very sandy SILT. Gravel is sub-angular to rounded fine to medium chalk and flint, with lenses of yellowish brown, fine and medium SAND. BRITONS LANE SAND AND GRAVEL		2.50	-	Î			8	45	16	29		
					3.00	- 	•	4							
						-									
						- - 4.00									
						-									
						-									

TRIAL PIT LOG

										Shee	et 1 of	1			
Scher	ne		Sheringham Recycling Centre	Jo	b No.	10289	4	Trial	Pit No		03				
Carrie	ed out	for	Community & Environmental Services	Da	ate Starte	d 08/0	4/2022	Date	Finish	ned	04/04	4/202	2		
Dime	nsions	S:	0.45m x 1.70m	Ту	pe of Rig	JCB	3CX						Logge	d by	MLB
Rema	rks:		Dry and stable.	De	epth (m)	3.00		Grou (m A	ind Lev OD)	vel	89.5	3	Drawr	ו by	CRV
				Co	o-ords	6162	290 - 3410	037				(Checke	∍d by	MLB
Backfill	Water	Casing	Description	Leger	d Depth (m)	Scale	Sam Type	nple No.	Field Tests	MC%	LL	_aborat	ory Test	ts Org.	CBR
			Dark greyish brown, slightly gravelly, silty, sandy TOPSOIL. Gravel is rounded to angular, fine to coarse flint. TOPSOIL Dark brown, slightly gravelly, sandy SILT. Gravel is angular to sub-angular, fine to coarse flint. HEAD Brown, very sandy SILT. BRITONS LANE SAND AND GRAVEL Becoming slightly gravelly from 1.60-3.00m. Gravel is angular to sub-angular. <i>The and medium flint.</i> With large lenses of firm light brown, gravely CLAY from 1.80-3.00. Gravel is sub-angular to sub-rounded, fire and medium chalk and flint. Beculder of chalk in south end of pit at 2,30.					1 2 3		23	26	18	31		

TRIAL PIT LOG

										Shee	t 1 of	1			
Scher	ne		Sheringham Recycling Centre	Job	No.	10289	4	Trial	Pit No.		04				
Carrie	d out	for	Community & Environmental Services	Date	Starte	d 08/04	4/2022	Date	Finish	ed	04/04	1/202	2		
Dimer	nsions	5 :	0.45m x 1.70m	Туре	of Rig	JCB	3CX						Logge	d by	MLB
Rema	rks:		Dry and stable.	Dept	th (m)	3.10		Grou (m A	ind Lev OD)	/el	89.6 [°]	1	Drawn	ו by	CRV
				Co-c	ords	6162	77 - 3410)17				(Checke	∍d by	MLB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Sam Type	nple No.	Field Tests	MC%		aborato	ory Test	ts Org.	CBR
			Brown, slightly gravelly, silty, sandy TOPSOIL. Gravel is sub- rounded to angular, fine and medium flint. TOPSOIL			-	Type	1							
			Light brown, very sandy SILT. BRITONS LANE SAND AND GRAVEL		0.30	-	•	2		14	26	14	11		
			Light brown, slightly gravelly, very silty, fine to medium SAND. Gravel is sub-rounded to rounded, fine and medium flint. BRITONS LANE SAND AND GRAVEL		1.00										
						- 2.00 	ŧ	3							
			Orangey brown, slightly gravelly, silty, fine and medium SAND. Gravel is sub-rounded to rounded, fine and medium flint. #RITONS LANE SAND AND GRAVEL Boulder of chalk, medium and coarse flint cobbles is north face of pit at 2.70m.		2.60 3.10	- - - 3.00	∳	4							
						- - - - - - - - - - - - - - - - - - -									

TRIAL PIT LOG

										Shee	t 1 of 1					
Scheme			Sheringham Recycling Centre	Job I	Job No. 102894				Trial Pit No. 05							
Carrie	d out	for	Community & Environmental Services	Date	Started	d 08/0	4/2022	Date	Finish	ed	04/04/2	2022				
Dimer	nsions	8:	0.45m x 1.70m	Туре	of Rig	JCB	3CX						Logged by			
Rema	rks:		Abandoned due to collapse. Dry.	Dept	h (m)	2.40			Ground Level 89.51 (m AOD)			Dra	Drawn by			
				Co-o	ords	6163	10 - 3410	26				Chec	ked by	MLB		
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Sam	ole No.	Field Tests	MC%		oratory Te		CBR		
			Dark brown, slightly gravelly, sandy TOPSOIL. Gravel is angular to sub-angular, fine to coarse fiint. TOPSOIL Orange, very gravelly, medium SAND. Gravel is angular to sub- rounded, fine and medium fiint. BRITONS LANE SAND AND GRAVEL Yellowish brown slightly gravelly, fine to medium SAND. Gravel is angular to sub-rounded, fine and medium flint. BRITONS LANE SAND AND GRAVEL		0.35		Type	NO. 1 2 3 4								

TRIAL PIT LOG

										Shee	et 1 of	1			
Scher	ne		Sheringham Recycling Centre	Job No. 102894 Trial Pit No. 06											
Carried out for Community & Environmer		for	Community & Environmental Services	Date Started 08/04/2022			Date Finished 04/04/2022								
Dimer	nsion	s:	0.45m x 1.70m	Туре	of Rig	JCB	3CX						Logged by		MLB
Rema	rks:		Abandoned at 2.70m sue to collapse. Dry.	Dept	h (m)	2.70		Grou (m A	nd Lev OD)	vel	89.48		Drawn by		CRV
			-	Co-c	ords	6163	800 - 3410	800					Checke	ed by	MLB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Sam		Field Tests				ory Test		
*****				******	(,		Туре	No.	10010	MC%	LL	PL	MPI	Org.	CBR
			Brown, slightly gravelly, silty, sandy TOPSOIL. Gravel is angular to rounded, fine to coarse flint. TOPSOIL			-	€	1							
			Orange, very gravelly, fine to coarse SAND. Gravel is sub- angular to rounded, fine to coarse flint.		0.30										
			angular to rounded, fine to coarse flint. RRITONS LANE SAND AND GRAVEL Orange silty fine and medium SAND. BRITONS LANE SAND AND GRAVEL	× × ×	0.45	-									
			BRITONS LANE SAND AND GRAVEL	× × × × × ×		-									
				× × × × × ×				2							
				××××		-	∓	2							
				xxxxx		-1.00									
				$\begin{pmatrix} x & x \\ x & x \end{pmatrix}$		-									
				× × × × ×											
				××××		-									
				×××××		_									
				××~×		-									
				×××		[
				× × × ,		-									
				× × × × × ×		-2.00									
				× × × ×	2.20										
			Orange, slightly gravelly, medium SAND. Gravel is angular to rounded, fine and medium flint.			-									
			BRITONS LANE SAND AND GRAVEL			-									
						E	♀	3							
					2.70	_									
						-									
						-									
						-3.00									
						-									
						-									
						-									
						-									
						-									
						-4.00									
						-									
						-									
						F									
						F									
						Ľ									
						Ļ									

Appendix E

TRIAL PIT LOG

									:	Shee	et 1 of	1			
Scheme Sheringham Recycling Centre Jo		Job	Trial	Trial Pit No. 07											
Carrie	ed out	for	Community & Environmental Services	Date	Date Started 08/04/2022		Date	Date Finished 04/04/20			4/202	022			
Dime	nsions	8:	0.45m x 1.70m	Туре	e of Rig	JCB	3CX						Logged	d by	MLB
Rema	arks:		Dry, some minor instability.		th (m)	2.90		Grou (m A	ind Lev OD)	/el	89.0	4	Drawn	ı by	CRV
				Co-c	ords	6163	328 - 3410)24				C	Checke	d by	MLB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Sam Type	nple No.	Field Tests	MC%		aborate	ory Tests	s Org.	CBR
			Brown, slightly gravelly, sandy TOPSOIL. Gravel is angular to sub-angular, fine and medium flint. TOPSOIL Orange, fine and medium SAND. BRITONS LANE SAND AND GRAVEL		0.30			NO. 1 2 3 4							

TRIAL PIT LOG

						Sheet 1 of 1									
		Job	No.	10289	4	Trial	Pit No.		08						
		Date	Date Started 08/04/2022		Date Finished 04/04/2022										
Dimer	nsions	S:	0.45m x 1.70m Dry and stable.		Type of Rig		JCB 3CX						Logged by		MLB
Rema	rks:				th (m)	3.00		Grou (m A	nd Lev OD)	/el	88.9	1	Drawn by		CRV
	_	_		Co-c	ords	6163	320 - 3410	00		-		C	Checke	d by	MLB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Samp Type	No.	Field Tests	MC%		aborato	ory Tests	s Org.	CBR
			Brown, slightly gravelly, sandy TOPSOIL. Gravel is angular to sub-angular, fine to coarse flint. TOPSOIL Orangey brown, fine and medium SAND. BRITONS LANE SAND AND GRAVEL		0.30	-	•	1							
			Becoming yellow from 1.30-3.00m.			- - - - - - - -	•	3							
						- 2.00 - - - - - -	Ŧ								
					3.00	- 	ŧ	4							
						- - - - - - - -									
						- - - -	-								

Appendix F

FAO N Young

Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Email: civil.laboratory@norsegroup.co.uk

Our Reference No.	NNPL2022040810
Our Project No	102894
Your Sample Ref	B4
Your Project or Order No.	708523
Date Report Issued	31 May 2022
	Page 1 of 1

nicola.young@norfolk.gov.uk

Determination of Liquid Limit to BS1377-2:1990 Cl 4.3 Cone Penetrometer (Definitive Method) (Withdrawn)

and Determination of Plasticity Index to BS1377-2:1990 Cl 5 (Withdrawn)

m
11
Apr 2022
Apr 2022

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Material	Soil Firm to stiff light brown, slightly gravelly, silty, very sandy CLAY. Gravel is sub-angular to rounded, fine and medium, flint and chalk.							
Description								
Supplier	Not applicable	Source Ex site						
	Test Specimen							
Location	Not applicable							
Orientation	Not applicable							
	Preparation Details							
Method of Division	Quartering							
Preparation Method	Wet sieving							
Retained 425µm (%)	7.4							
Natural MC (%)	7.8							
Drying Temp. (^o C)	105-110							
Liquid Limit (%)	45							
Plastic Limit (%)	16							
Plasticity Index (%)	29							
Modified PI *(%)	27	*BRE Digest 240:1993.						
		This calculation is outside the scope of UKAS accreditation.						
BS Soil Classification	CI	·						
Remarks	NHBC Volume change p	potential classification is medium.						

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory.

Jan Eller

FAO N Young

Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Email: civil.laboratory@norsegroup.co.uk

Our Reference No.	NNPL2022040812
Our Project No	102894
Your Sample Ref	B2
Your Project or Order No.	708523
Date Report Issued	31 May 2022
	Page 1 of 1

nicola.young@norfolk.gov.uk

Determination of Liquid Limit to BS1377-2:1990 Cl 4.3 Cone Penetrometer (Definitive Method) (Withdrawn)

and Determination of Plasticity Index to BS1377-2:1990 Cl 5 (Withdrawn)

Scheme	Sheringham HWRC		
Location	TP03	Depth	0.6m
Date sampled	05 Apr 2022	Date received	05 Apr 2022
Sampled by	KN (NPL Staff)	Date tested	27 Apr 2022
Sample type	Bulk Disturbed	Sample Mass (g)	496
16			

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Material	Soil	

Description Orangish brown, gravelly, sandy, CLAY. Gravel is angular to subrounded fine flint.

Supplier	Not applicable	Source Ex site
	Test Specimen	
Location	Not applicable	
Orientation	Not applicable	
	Preparation Details	
Method of Division	Quartering	
Preparation Method	Wet sieving	
Retained 425µm (%)	10.0	
Natural MC (%)	17	
Drying Temp. (°C)	105-110	
Liquid Limit (%)	26	
Plastic Limit (%)	18	
Plasticity Index (%)	8	
Modified PI *(%)	7	*BRE Digest 240:1993.
		This calculation is outside the scope of UKAS accreditation.
BS Soil Classification	CL	
Remarks	NHBC Volume change p	potential classification is non-shrinkable

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory.

Jan Eller

FAO N Young

Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Email: civil.laboratory@norsegroup.co.uk

Our Reference No.	NNPL2022040813
Our Project No	102894
Your Sample Ref	B3
Your Project or Order No.	708523
Date Report Issued	31 May 2022
	Page 1 of 1

nicola.young@norfolk.gov.uk

Determination of Liquid Limit to BS1377-2:1990 Cl 4.3 Cone Penetrometer (Definitive Method) (Withdrawn)

and Determination of Plasticity Index to BS1377-2:1990 Cl 5 (Withdrawn)

P03	Depth	2.7m
5 Apr 2022	Date received	05 Apr 2022
N (NPL Staff)	Date tested	27 Apr 2022
ulk Disturbed	Sample Mass (g)	456
1	5 Apr 2022 N (NPL Staff)	S Apr 2022 Date received N (NPL Staff) Date tested

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Material	Soil	
Description	scription Dark reddish brown slightly gravelly slightly sandy silty CLAY. Gravel is angular to subrounded f and flint.	
Supplier	Not applicable	Source Ex site
	Test Specimen	
Location	Not applicable	
Orientation	Not applicable	
	Preparation Details	
Method of Division	Quartering	
Preparation Method	Wet sieving	
Retained 425µm (%)	11.6	
Natural MC (%)	23	
Drying Temp. (°C)	105-110	
Liquid Limit (%)	47	
Plastic Limit (%)	16	
Plasticity Index (%)	31	
Modified PI *(%)	27	*BRE Digest 240:1993.
		This calculation is outside the scope of UKAS accreditation.
BS Soil Classification	CI	
Remarks	NHBC Volume change	potential classification is medium.

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory.

Jan Eller

FAO N Young

Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Email: civil.laboratory@norsegroup.co.uk

Our Reference No.	NNPL2022040815
Our Project No	102894
Your Sample Ref	B2
Your Project or Order No.	708523
Date Report Issued	31 May 2022
	Page 1 of 1

nicola.young@norfolk.gov.uk

Determination of Liquid Limit to BS1377-2:1990 Cl 4.3 Cone Penetrometer (Definitive Method) (Withdrawn)

and Determination of Plasticity Index to BS1377-2:1990 Cl 5 (Withdrawn)

Scheme	Sheringham HWRC		
Location	TP04	Depth	0.7m
Date sampled	05 Apr 2022	Date received	05 Apr 2022
Sampled by	KN (NPL Staff)	Date tested	14 Apr 2022
Sample type	Bulk Disturbed	Sample Mass (g)	530
If a sample certificate	was provided it is available for inspection	The accuracy of any information	on provided by third parties cannot be

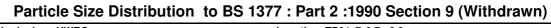
If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

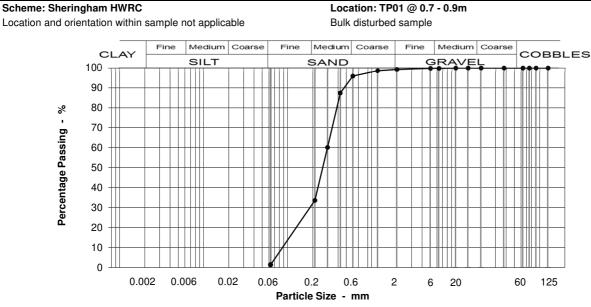
Material	Soil
Description	Light brown, slightly gravelly very sandy, silty CLAY. Gravel is angular to subrounded fine flint and quartz.

Supplier	Not applicable	Source Ex site
	Test Specimen	
Location	Not applicable	
Orientation	Not applicable	
	Preparation Details	
Method of Division	Quartering	
Preparation Method	Wet sieving	
Retained 425µm (%)	5.6	
Natural MC (%)	14	
Drying Temp. (°C)	105-110	
Liquid Limit (%)	26	
Plastic Limit (%)	14	
Plasticity Index (%)	11	
Modified PI *(%)	11	*BRE Digest 240:1993.
		This calculation is outside the scope of UKAS accreditation.
BS Soil Classification	CL	
Remarks	NHBC Volume change p	potential classification is low.

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory.

Jan Eller




Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. NNPL202204085-612

Our Project No.	102894
Your Sample Ref.	2
Your Order No.	708523
Date Tested	18/05/2022
Date Report Issued	24 May 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

BOULDERS COBBLES Coarse GRAVEL Medium GRAVEL Fine GRAVEL Coarse SAND Medium SAND Fine SAND Silt & Clay Grading A	0 0 0 1 3 62 32 1 Analysis
Coarse GRAVEL Medium GRAVEL Fine GRAVEL Coarse SAND Medium SAND Fine SAND Silt & Clay	0 0 1 3 62 32 1
Medium GRAVEL Fine GRAVEL Coarse SAND Medium SAND Fine SAND Silt & Clay	0 1 3 62 32 1
Fine GRAVEL Coarse SAND Medium SAND Fine SAND Silt & Clay	1 3 62 32 1
Coarse SAND Medium SAND Fine SAND Silt & Clay	62 32 1
Medium SAND Fine SAND Silt & Clay	62 32 1
Fine SAND Silt & Clay	32 1
Silt & Clay	1
	1 Analysis
Grading A	Analysis
Grading A	Analysis
D100	6
D60	0.30
D10	0.10
niformity Coefficient	3
Descri	ption
angey-brown, fine to me	edium SAND.

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

(BS1377-Part 2, 1990)

Jim Elliott (Lead Technical Support Tech.)

Jan Eller

Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG

> > 0.002

0.006

0.02

0.06

Our reference No. NNPL202204086-612

Our Project No.	102894
Your Sample Ref.	3
Your Order No.	708523
Date Tested	19/05/2022
Date Report Issued	24 May 2022

125

60

nicola.young@norfolk.gov.uk

Page 1 of 1

Particle Size Distribution to BS 1377 : Part 2 :1990 Section 9 (Withdrawn) Scheme: Sheringham HWRC Location: TP01 @ 1.8 - 2m Location and orientation within sample not applicable Bulk disturbed sample Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT SAND GRAVE 100 90 80 Percentage Passing - % 70

Particle Size - mm If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

02

06

2

20 6

		Specification for Highway Sample Proportion	
	Works Classification	BOULDERS	0
% Passing	Table 6/2	COBBLES	0
100	This material complies with the	Coarse GRAVEL	0
100	following material classes 1B,	Medium GRAVEL	0
100	6E/6R, 6M.	Fine GRAVEL	0
100		Coarse SAND	4
100		Medium SAND	51
100		Fine SAND	41
100		Silt & Clay	3
100			
100		Grading A	nalysis
100	Please be aware that we only report	D100	10
100	compliance with specifications using	D60	0.26
99	'simple acceptance' as a guide as	D10	0.09
95	the specifications for the material as	Uniformity Coefficient [!]	3
88	well as the methodology for testing		
71	are well established and take into	Descrip	otion
44	account uncertainty in their	Orangey-brown, fine to me	dium SAND.
3	formulation.		
44	account uncertainty in their	Orangey-brown,	

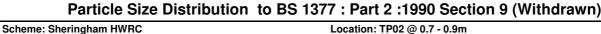
Moisture content % (BS1377-Part 2, 1990)

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Test Code = 612

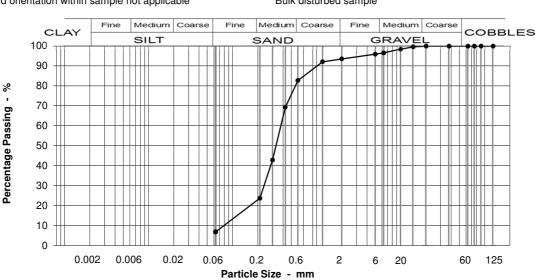
Jim Elliott (Lead Technical Support Tech.)

Jan Eller



Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. NNPL202204088-612

Our Project No.	102894
Your Sample Ref.	2
Your Order No.	708523
Date Tested	18/05/2022
Date Report Issued	24 May 2022


nicola.young@norfolk.gov.uk

Page 1 of 1

Location and orientation within sample not applicable

Location: TP02 @ 0.7 - 0. Bulk disturbed sample

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Cieve		On a sifis sting for Ulinhams	Somalo Dr	nortiono
Siev	ing	Specification for Highway Works Classification	Sample Proportions	
Particle Size	% Dessing	works classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 1B,	Medium GRAVEL	4
75	100	6E/6R, 6M.	Fine GRAVEL	3
63	100		Coarse SAND	11
37.5	100		Medium SAND	59
20	100		Fine SAND	17
14	100		Silt & Clay	7
10	98		• • • • •	
6.3	96		Grading A	Analysis
5	96	Please be aware that we only report	D100	14
2	93	compliance with specifications using	D60	0.38
1.18	92	'simple acceptance' as a guide as	D10	0.09
0.600	83	the specifications for the material as	Uniformity Coefficient [!]	4
0.425	69	well as the methodology for testing	· · · · ·	
0.300	43	are well established and take into	Descri	ption
0.212	24	account uncertainty in their	Yellowish brown, medium	SAND.
0.063	7	formulation.		
		Moisture content % 4.2		

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

(BS1377-Part 2, 1990)

Test Code = 612

Jim Elliott (Lead Technical Support Tech.)

Jan Eller

Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG

Our reference No. NNPL202204089-612

Our Project No.	102894
Your Sample Ref.	3
Your Order No.	708523
Date Tested	24/05/2022
Date Report Issued	09 Jun 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

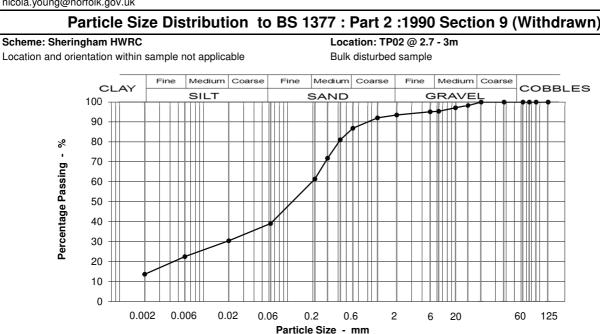
If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Sieving	Specification for Highway	Sample Proportions	
Particle Size % Passing mm	Works Classification	BOULDERS	0
	Table 6/2	COBBLES	0
125 100	This material complies with the	Coarse GRAVEL	0
90 100	following material classes 1B,	Medium GRAVEL	5
75 100	6E/6R, 6M.	Fine GRAVEL	7
63 100		Coarse SAND	18
37.5 100		Medium SAND	54
20 100		Fine SAND	14
14 100		Silt & Clay	0
10 98			
6.3 95		Grading Analysis	
5 93	Please be aware that we only report	D100	14
2 87	compliance with specifications using	D60	0.506
1.18 84	'simple acceptance' as a guide as	D10	0.163
0.600 69	the specifications for the material as	Uniformity Coefficient [!]	3
0.425 52	well as the methodology for testing	_	
0.300 32	are well established and take into	Description	
0.212 15	account uncertainty in their Yellowish brown, gravelly, medium SAND. G		, medium SAND. Gravel
0.063 0 1	formulation.	is sub-angular to rounded, fine and medium flint.	

Moisture content % 4.1 (BS1377-Part 2, 1990)

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Simon Holden (Operations Manager)


Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG

Our reference No. NNPL2022040810-612

Our Project No.	102894
Your Sample Ref.	4
Your Order No.	708523
Date Tested	26/04/2022
Date Report Issued	09 Jun 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Sieving		Specification for Highway	Sample Proportions	
Particle Size		Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 2A/2B,	Medium GRAVEL	5
75	100	2A/2B.	Fine GRAVEL	2
63	100		Coarse SAND	7
37.5	100		Medium SAND	25
20	100		Fine SAND	22
14	98		Silt & Clay	39
10	97			
6.3	95		Grading Analysis	
5	95	Please be aware that we only report	D100	14
2	93	compliance with specifications using	D60	0.203
1.18	92	'simple acceptance' as a guide as	D10	0.002
0.600	87	the specifications for the material as	Uniformity Coefficient [!]	>10
0.425	81	well as the methodology for testing		
0.300	72	are well established and take into	Description	
0.212	61	account uncertainty in their	Firm to stiff light brown, slightly gravelly, silty, very	
0.063	39	formulation.	sandy CLAY. Gravel is sub-angular to rounded,	
0.020	30		fine and medium, flint and chalk.	
0.006	22			
0.002	14	Moisture content % 8.3 (BS1377-Part 2, 1990)		

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

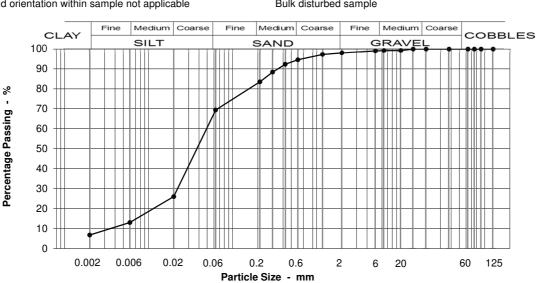
* Uniformity coefficient extrapolated

! UC to Spec. For Highway Works, table 6/1 footnote 5

0920

Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. NNPL2022040812-612

Our Project No.	102894
Your Sample Ref.	2
Your Order No.	708523
Date Tested	03/05/2022
Date Report Issued	09 Jun 2022


nicola.young@norfolk.gov.uk

Page 1 of 1

Particle Size Distribution to BS 1377 : Part 2 :1990 Section 9 (Withdrawn) Scheme: Sheringham HWRC Location: TP03 @ 0.6 - 0.8m

Location and orientation within sample not applicable

Location: TP03 @ 0.6 - 0.8m Bulk disturbed sample

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

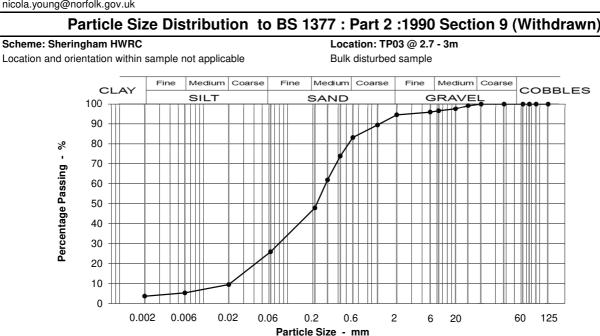
Sieving		Specification for Highway	Sample Proportions	
Particle Size	0/ Dessing	Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 2A/2B,	Medium GRAVEL	1
75	100	2A/2B.	Fine GRAVEL	1
63	100		Coarse SAND	3
37.5	100		Medium SAND	11
20	100		Fine SAND	14
14	100		Silt & Clay	69
10	99			
6.3	99		Grading	Analysis
5	99	Please be aware that we only report	D100	10
2	98	compliance with specifications using	D60	0.054
1.18	97	'simple acceptance' as a guide as	D10	0.004
0.600	95	the specifications for the material as	Uniformity Coefficient [!]	>10
0.425	92	well as the methodology for testing	· · · ·	
0.300	88	are well established and take into	Descr	iption
0.212	84	account uncertainty in their	Orangish brown, gravelly,	sandy, CLAY. Gravel is
0.063	69	formulation.	angular to subrounded fin	e flint.
0.020	26		-	
0.006	13			
0.002	7	Moisture content % 18 (BS1377-Part 2, 1990)		

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

* Uniformity coefficient extrapolated

! UC to Spec. For Highway Works, table 6/1 footnote 5

0920


Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG

Our reference No. NNPL2022040813-612

Our Project No.	102894
Your Sample Ref.	3
Your Order No.	708523
Date Tested	27/05/2022
Date Report Issued	09 Jun 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Sieving		Specification for Highway	Sample Proportions	
Particle Size	or D	Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 2A/2B,	Medium GRAVEL	3
75	100	2A/2B.	Fine GRAVEL	2
63	100		Coarse SAND	11
37.5	100		Medium SAND	35
20	100		Fine SAND	22
14	99		Silt & Clay	26
10	98			
6.3	97		Grading	Analysis
5	96	Please be aware that we only report	D100	14
2	95	compliance with specifications using	D60	0.288
1.18	89	'simple acceptance' as a guide as	D10	0.021
0.600	83	the specifications for the material as	Uniformity Coefficient [!]	13
0.425	74	well as the methodology for testing	· · · · ·	
0.300	62	are well established and take into	Descri	iption
0.212	48	account uncertainty in their	Dark reddish brown slight	ly gravelly slightly sandy
0.063	26	formulation.	silty CLAY. Gravel is angu	
0.020	9		chalk and flint.	
0.006	5			
0.002	4	Moisture content % 21 (BS1377-Part 2, 1990)		

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

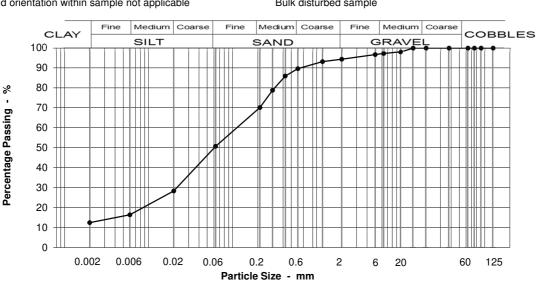
* Uniformity coefficient extrapolated

! UC to Spec. For Highway Works, table 6/1 footnote 5

Jan Eller

Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. NNPL2022040815-612

Our Project No.	102894
Your Sample Ref.	2
Your Order No.	708523
Date Tested	03/05/2022
Date Report Issued	09 Jun 2022


nicola.young@norfolk.gov.uk

Page 1 of 1

Particle Size Distribution to BS 1377 : Part 2 :1990 Section 9 (Withdrawn) Scheme: Sheringham HWRC Location: TP04 @ 0.7 - 0.9m

Location and orientation within sample not applicable

Location: TP04 @ 0.7 - 0 Bulk disturbed sample

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

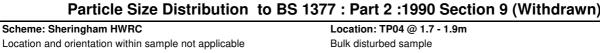
Siev	ing	Specification for Highway	Sample Pro	oportions
Particle Size		Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 2A/2B,	Medium GRAVEL	3
75	100	2A/2B.	Fine GRAVEL	3
63	100		Coarse SAND	5
37.5	100		Medium SAND	19
20	100		Fine SAND	19
14	100		Silt & Clay	51
10	98			
6.3	97		Grading A	Analysis
5	97	Please be aware that we only report	D100	10
2	94	compliance with specifications using	D60	0.134
1.18	93	'simple acceptance' as a guide as	D10	0.003
0.600	90	the specifications for the material as	Uniformity Coefficient ¹	>10
0.425	86	well as the methodology for testing		
0.300	79	are well established and take into	Descri	ption
0.212	70	account uncertainty in their	Light brown, slightly grave	lly very sandy, silty
0.063	51	formulation.	CLAY. Gravel is angular to	subrounded fine flint
0.020	28		and quartz.	
0.006	16			
0.002	12	Moisture content % 12 (BS1377-Part 2, 1990)		

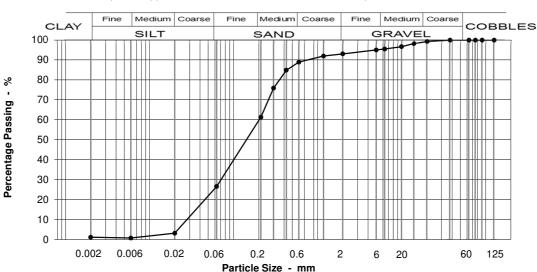
This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

* Uniformity coefficient extrapolated

! UC to Spec. For Highway Works, table 6/1 footnote 5

0920




Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. NNPL2022040816-612

Our Project No.	102894
Your Sample Ref.	3
Your Order No.	708523
Date Tested	19/05/2022
Date Report Issued	09 Jun 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Sieving		Specification for Highway	Sample Proportions	
Particle Size	0/ D :	Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	1
90	100	following material classes 2A/2B.	Medium GRAVEL	4
75	100	-	Fine GRAVEL	2
63	100		Coarse SAND	4
37.5	100		Medium SAND	28
20	99		Fine SAND	35
14	98		Silt & Clay	27
10	97			
6.3	95		Grading A	Analysis
5	95	Please be aware that we only report	D100	20
2	93	compliance with specifications using	D60	0.207
1.18	92	'simple acceptance' as a guide as	D10	0.033
0.600	89	the specifications for the material as	Uniformity Coefficient [!]	6
0.425	85	well as the methodology for testing		
0.300	76	are well established and take into	Descri	ption
0.212	61	account uncertainty in their	Light brown, gravelly, sligh	tly silty, fine to medium
0.063	27	formulation.	SAND. Gravel is sub-roun	ded to rounded, fine
0.020	3		and medium flint.	
0.006	1			
0.002	1	Moisture content % 10		
		(BS1377-Part 2, 1990)		

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

* Uniformity coefficient extrapolated

! UC to Spec. For Highway Works, table 6/1 footnote 5

0920

Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG

Our reference No. NNPL2022040817-612

Our Project No.	102894
Your Sample Ref.	4
Your Order No.	708523
Date Tested	14/05/2022
Date Report Issued	09 Jun 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

D Particle Size Distribution to BS 1377 : Part 2 :1990 Section 9 (Withdrawn) Scheme: Sheringham HWRC Location: TP04 @ 2.7 - 3m Location and orientation within sample not applicable Bulk disturbed sample Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT GRAVE SAND 100 90 80 Percentage Passing - % 70 60 50 40 30 20 10 0 0.002 0.006 0.02 0.06 2 125 02 06 20 6 60

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Particle Size - mm

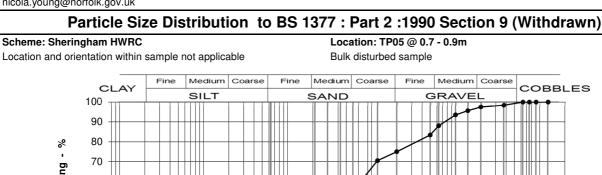
Sievi	ng	Specification for Highway	Sample Proportions	
Particle Size		Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 2A/2B,	Medium GRAVEL	4
75	100	2A/2B.	Fine GRAVEL	3
63	100		Coarse SAND	6
37.5	100		Medium SAND	31
20	100		Fine SAND	28
14	99		Silt & Clay	27
10	98			
6.3	96		Grading Ana	alysis
5	95	Please be aware that we only report	D100	14
2	93	compliance with specifications using	D60	0.238
1.18	91	'simple acceptance' as a guide as	D10	0.026
0.600	87	the specifications for the material as	Uniformity Coefficient ¹	9
0.425	82	well as the methodology for testing	· · · ·	
0.300	70	are well established and take into	Descripti	on
0.212	56	account uncertainty in their	Orangey brown, slightly grav	elly, silty, fine and
0.063	27	formulation.	medium SAND. Gravel is sub	p-rounded to
0.020	7		rounded, fine and medium fli	nt.
0.006	6			
0.002	3	Moisture content % 10 (BS1377-Part 2, 1990)		

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

* Uniformity coefficient extrapolated

! UC to Spec. For Highway Works, table 6/1 footnote 5

Jan Eller


Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG

Our reference No. NNPL2022040819-612

Our Project No.	102894
Your Sample Ref.	2
Your Order No.	708523
Date Tested	18/05/2022
Date Report Issued	09 Jun 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

Percentage Passing - % 60 50 40 30 20 10 0 0.002 0.006 0.02 0.06 125 06 2 20 02 6 60 Particle Size - mm

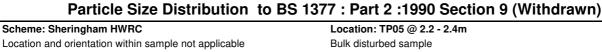
If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

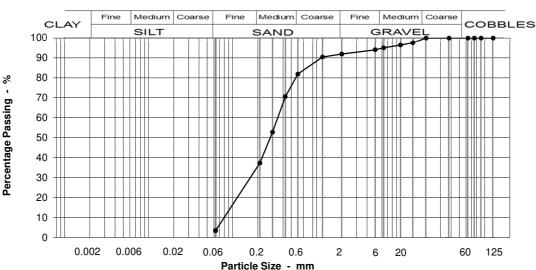
Sievi	ng	Specification for Highway	Sample Proportions	
article Size	a/ D	Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	3
90	100	following material classes 1B,	Medium GRAVEL	9
75	100	6E/6R, 6M.	Fine GRAVEL	13
63	100		Coarse SAND	20
37.5	98		Medium SAND	46
20	97		Fine SAND	8
14	96		Silt & Clay	2
10	93			
6.3	88		Grading A	nalysis
5	83	Please be aware that we only report	D100	38
2	75	compliance with specifications using	D60	0.778
1.18	71	'simple acceptance' as a guide as	D10	0.215
0.600	55	the specifications for the material as	Uniformity Coefficient [!]	4
0.425	40	well as the methodology for testing		
0.300	21	are well established and take into	Descrip	tion
0.212	10	account uncertainty in their	Orange, very gravelly, med	ium SAND. Gravel is
0.063	2	formulation.	angular to sub-rounded, find	e to medium flint.

Moisture content % 3.2 (BS1377-Part 2, 1990)

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Jan Eller




Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. NNPL2022040821-612

Our Project No.	102894
Your Sample Ref.	4
Your Order No.	708523
Date Tested	03/05/2022
Date Report Issued	24 May 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Sieving		Specification for Highway	Sample Proportions	
Particle Size	o/ B ·	Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 1B,	Medium GRAVEL	5
75	100	6E/6R, 6M.	Fine GRAVEL	3
63	100		Coarse SAND	10
37.5	100		Medium SAND	45
20	100		Fine SAND	34
14	98		Silt & Clay	3
10	96			
6.3	95		Grading	Analysis
5	94	Please be aware that we only report	D100	14
2	92	compliance with specifications using	D60	0.35
1.18	90	'simple acceptance' as a guide as	D10	0.09
0.600	82	the specifications for the material as	Uniformity Coefficient ¹	4
0.425	71	well as the methodology for testing		
0.300	53	are well established and take into	Descr	iption
0.212	37	account uncertainty in their	Yellowish-brown, slightly	gravelly, fine to medium
0.063	3	formulation.	SAND. Gravel is angular	to sub-rounded, fine to
			medium flint.	

5.9

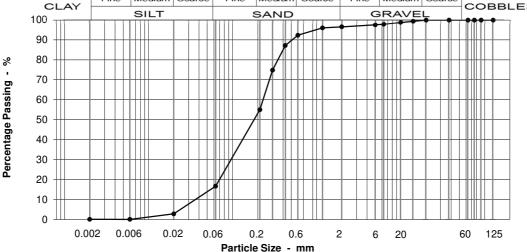
This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Moisture content %

(BS1377-Part 2, 1990)

Test Code = 612

Jan Eller


Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. NNPL2022040823-612

Our Project No.	102894
Your Sample Ref.	2
Your Order No.	708523
Date Tested	18/05/2022
Date Report Issued	09 Jun 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

Particle Size Distribution to BS 1377 : Part 2 :1990 Section 9 (Withdrawn) Scheme: Sheringham HWRC Location: TP06 @ 0.7 - 0.9m Location and orientation within sample not applicable Bulk disturbed sample Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse COBBLES CLAY SILT SAND GRAVE 100

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Siev	ing	Specification for Highway	Sample Pro	portions
Particle Size		Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 2A/2B.	Medium GRAVEL	2
75	100	-	Fine GRAVEL	1
63	100		Coarse SAND	4
37.5	100		Medium SAND	37
20	100		Fine SAND	38
14	99		Silt & Clay	17
10	99			
6.3	98		Grading A	nalysis
5	98	Please be aware that we only report	D100	14
2	97	compliance with specifications using	D60	0.234
1.18	96	'simple acceptance' as a guide as	D10	0.042
0.600	92	the specifications for the material as	Uniformity Coefficient ¹	6
0.425	87	well as the methodology for testing		
0.300	75	are well established and take into	Descrip	otion
0.212	55	account uncertainty in their	Orange, silty fine to mediu	m SAND.
0.063	17	formulation.		
0.020	3			
0.006	0			
0.002	0	Moisture content % 4.9 (BS1377-Part 2, 1990)		

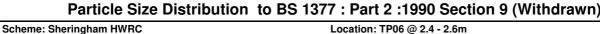
This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

* Uniformity coefficient extrapolated

! UC to Spec. For Highway Works, table 6/1 footnote 5

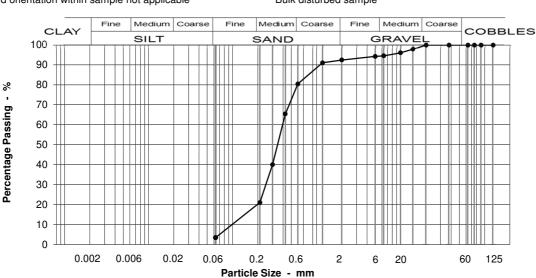
0920

Simon Holden (Operations Manager)



Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. NNPL2022040824-612

Our Project No.	102894
Your Sample Ref.	3
Your Order No.	708523
Date Tested	03/05/2022
Date Report Issued	24 May 2022


nicola.young@norfolk.gov.uk

Page 1 of 1

Location and orientation within sample not applicable

Location: TP06 @ 2.4 - 2. Bulk disturbed sample

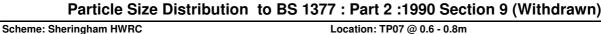
If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Sievi	ng	Specification for Highway	Sample Proportions	
Particle Size	•	Works Classification	BOULDERS 0	
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 1B,	Medium GRAVEL	5
75	100	6E/6R, 6M.	Fine GRAVEL	2
63	100		Coarse SAND	12
37.5	100		Medium SAND	59
20	100		Fine SAND	18
14	98		Silt & Clay	3
10	96			
6.3	95		Grading	Analysis
5	94	Please be aware that we only report	D100	14
2	92	compliance with specifications using	D60	0.40
1.18	91	'simple acceptance' as a guide as	D10	0.12
0.600	80	the specifications for the material as	Uniformity Coefficient ¹	3
0.425	65	well as the methodology for testing		
0.300	40	are well established and take into	Descr	iption
0.212	21	account uncertainty in their	Orange, slightly gravelly,	medium SAND. Gravel is
0.063	3	formulation.	angular to rounded, fine to	o medium flint

Moisture content % 3.7 (BS1377-Part 2, 1990)

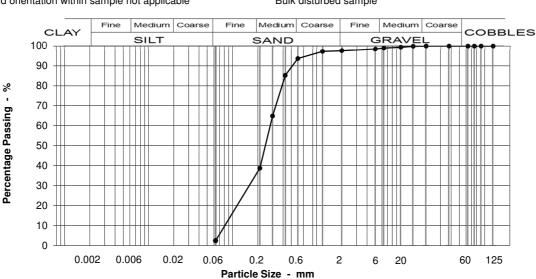
This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Jan Eller



Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. NNPL2022040826-612

Our Project No.	102894
Your Sample Ref.	2
Your Order No.	708523
Date Tested	18/05/2022
Date Report Issued	24 May 2022


nicola.young@norfolk.gov.uk

Page 1 of 1

Location and orientation within sample not applicable

Location: TP07 @ 0.6 - 0.8 Bulk disturbed sample

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

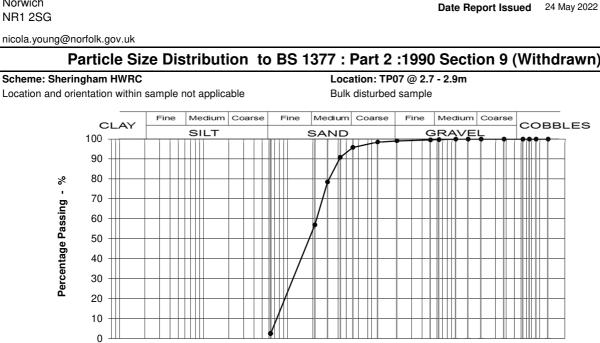
Sieving		Specification for Highway	Sample Proportions	
Particle Size		Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 1B,	Medium GRAVEL	1
75	100	6E/6R, 6M.	Fine GRAVEL	1
63	100		Coarse SAND	4
37.5	100		Medium SAND	55
20	100		Fine SAND	36
14	100		Silt & Clay	2
10	99			
6.3	99		Grading A	nalysis
5	98	Please be aware that we only report	D100	14
2	98	compliance with specifications using	D60	0.28
1.18	97	'simple acceptance' as a guide as	D10	0.09
0.600	94	the specifications for the material as	Uniformity Coefficient	3
0.425	85	well as the methodology for testing	· · · · ·	
0.300	65	are well established and take into	Descrip	otion
0.212	39	account uncertainty in their	Orange, fine to medium SA	AND.
0.063	2	formulation.	-	
		Moisture content % 3.6		

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

(BS1377-Part 2, 1990)

Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG

Our reference No. NNPL2022040828-612


Our Project No.	102894
Your Sample Ref.	4
Your Order No.	708523
Date Tested	03/05/2022
Date Report Issued	24 May 2022

125

60

nicola.young@norfolk.gov.uk

Page 1 of 1

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

02

Particle Size - mm

06

Sieving		Specification for Highway	Sample Proportions	
Particle Size	o(D ·	Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 1B,	Medium GRAVEL	0
75	100	6E/6R, 6M.	Fine GRAVEL	1
63	100		Coarse SAND	3
37.5	100		Medium SAND	39
20	100		Fine SAND	54
14	100		Silt & Clay	2
10	100			
6.3	100		Grading A	Analysis
5	100	Please be aware that we only report	D100	6
2	99	compliance with specifications using	D60	0.22
1.18	98	'simple acceptance' as a guide as	D10	0.08
0.600	96	the specifications for the material as	Uniformity Coefficient [!]	3
0.425	91	well as the methodology for testing		
0.300	78	are well established and take into	Descri	ption
0.212	57	account uncertainty in their	Yellow, fine to medium SA	ND.
0.063	2	formulation.		
		Moisture content % 3.4		

2

20 6

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

0.002

0.006

0.02

0.06

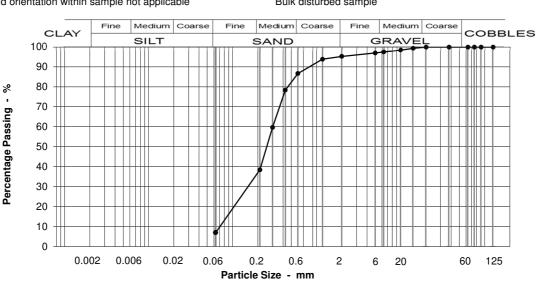
(BS1377-Part 2, 1990)

Test Code = 612

Jan Eller

Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. NNPL2022040830-612

Our Project No.	102894
Your Sample Ref.	2
Your Order No.	708523
Date Tested	18/05/2022
Date Report Issued	24 May 2022


nicola.young@norfolk.gov.uk

Page 1 of 1

Particle Size Distribution to BS 1377 : Part 2 :1990 Section 9 (Withdrawn) Scheme: Sheringham HWRC Location: TP08 @ 0.7 - 0.9m

Location and orientation within sample not applicable

Location: TP08 @ 0.7 - 0.9m Bulk disturbed sample

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

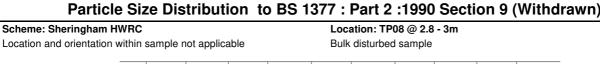
Sieving		Specification for Highway	Sample Proportions	
Particle Size	a (D) ;	Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 1B,	Medium GRAVEL	3
75	100	6E/6R, 6M.	Fine GRAVEL	2
63	100		Coarse SAND	9
37.5	100		Medium SAND	48
20	100		Fine SAND	31
14	99		Silt & Clay	7
10	98		· · · · · ·	
6.3	97		Grading A	nalysis
5	97	Please be aware that we only report	D100	14
2	95	compliance with specifications using	D60	0.30
1.18	94	'simple acceptance' as a guide as	D10	0.08
0.600	87	the specifications for the material as	Uniformity Coefficient [!]	4
0.425	78	well as the methodology for testing	· · · ·	
0.300	60	are well established and take into	Descrip	tion
0.212	38	account uncertainty in their	Orangey-brown, fine to mee	dium SAND.
0.063	7	formulation.		
		Moisture content % 5.5		

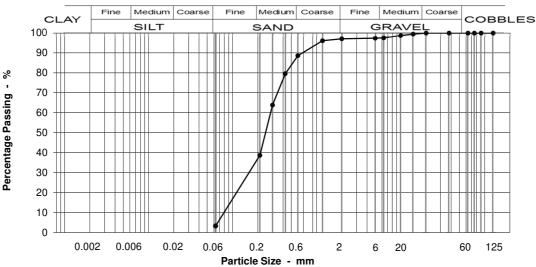
This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

(BS1377-Part 2, 1990)

Test Code = 612

Jan Eller




Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. NNPL2022040832-612

Our Project No.	102894
Your Sample Ref.	4
Your Order No.	708523
Date Tested	03/05/2022
Date Report Issued	24 May 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

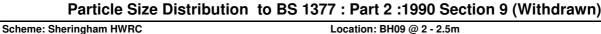
If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Sieving	Specification for Highway	Sample Proportions	
Particle Size	Works Classification	BOULDERS	0
mm % Passing	Table 6/2	COBBLES	0
125 100	This material complies with the	Coarse GRAVEL	0
90 100	following material classes 1B,	Medium GRAVEL	2
75 100	6E/6R, 6M.	Fine GRAVEL	0
63 100		Coarse SAND	8
37.5 100		Medium SAND	50
20 100		Fine SAND	35
14 99		Silt & Clay	3
10 99			
6.3 98		Grading A	Analysis
5 97	Please be aware that we only report	D100	14
2 97	compliance with specifications using	D60	0.29
1.18 96	'simple acceptance' as a guide as	D10	0.09
0.600 89	the specifications for the material as	Uniformity Coefficient ¹	3
0.425 80	well as the methodology for testing		
0.300 64	are well established and take into	Descri	ption
0.212 39	account uncertainty in their	Yellow, fine to medium SA	ND.
0.063 3	formulation.		

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

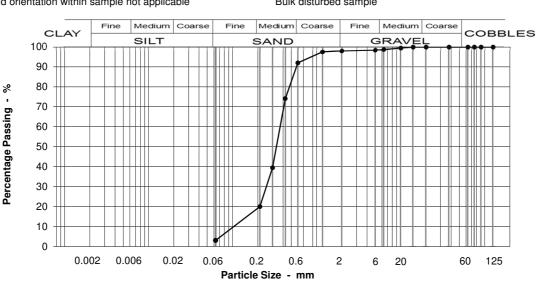
(BS1377-Part 2, 1990)

Jan Eller



Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. 0000-BH09-B4-612

Our Project No.	102894
Your Sample Ref.	4
Your Order No.	708523
Date Tested	19/05/2022
Date Report Issued	24 May 2022


nicola.young@norfolk.gov.uk

Page 1 of 1

Location and orientation within sample not applicable

Location: BH09 @ 2 - 2.5m Bulk disturbed sample

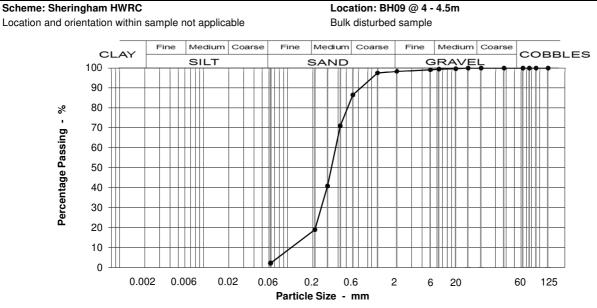
If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Sieving Specification for Highway Works Classification Particle Size mm % Passing Table 6/2 125 100 This material complies with the 90 100	Sample Pro BOULDERS COBBLES Coarse GRAVEL Medium GRAVEL	0 0 0 0
mm ^{% Passing} Table 6/2 125 100 This material complies with the	COBBLES Coarse GRAVEL	0
		0
90 100 following material classes 1B	Medium GRAVEL	
		1
75 100 6E/6R, 6M.	Fine GRAVEL	1
63 100	Coarse SAND	6
37.5 100	Medium SAND	72
20 100	Fine SAND	17
14 100	Silt & Clay	3
10 100		
6.3 99	Grading A	nalysis
5 98 Please be aware that we only report	D100	10
2 98 compliance with specifications using	D60	0.37
1.18 98 'simple acceptance' as a guide as	D10	0.12
0.600 92 the specifications for the material as	Uniformity Coefficient [!]	3
0.425 74 well as the methodology for testing		
0.300 39 are well established and take into	Descrip	otion
0.212 20 account uncertainty in their	Yellowish-orange, medium	SAND.
0.063 3 formulation.		
Moisture content % 1051		

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

(BS1377-Part 2, 1990)

Jan Eller


Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. 0000-BH09-B8-612

Our Project No.	102894
Your Sample Ref.	8
Your Order No.	708523
Date Tested	09/05/2022
Date Report Issued	24 May 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

Particle Size Distribution to BS 1377 : Part 2 :1990 Section 9 (Withdrawn)

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Sievi	ng	Specification for Highway	Sample Pro	portions
Particle Size	a (D) ;	Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 1B,	Medium GRAVEL	1
75	100	6E/6R, 6M.	Fine GRAVEL	1
63	100		Coarse SAND	12
37.5	100		Medium SAND	68
20	100		Fine SAND	17
14	100		Silt & Clay	2
10	100			
6.3	99		Grading A	nalysis
5	99	Please be aware that we only report	D100	10
2	98	compliance with specifications using	D60	0.38
1.18	97	'simple acceptance' as a guide as	D10	0.13
0.600	86	the specifications for the material as	Uniformity Coefficient ¹	3
0.425	71	well as the methodology for testing	_	
0.300	41	are well established and take into	Descrip	otion
0.212	19	account uncertainty in their	Yellowish-orange, medium	SAND.
0.063	2	formulation.		
		Moisture content % 5.6		

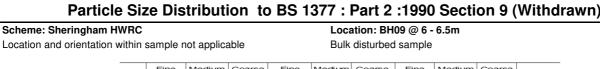
This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

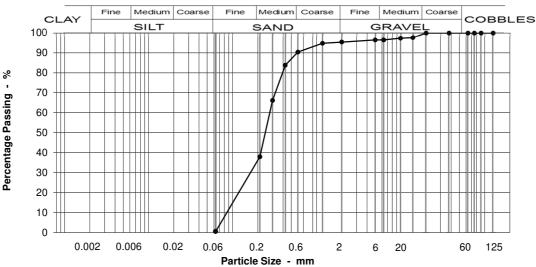
(BS1377-Part 2, 1990)

Jim Elliott (Lead Technical Support Tech.)

Jan Eller

S




Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. 0000-BH09-B12-612

Our Project No.	102894
Your Sample Ref.	12
Your Order No.	708523
Date Tested	03/05/2022
Date Report Issued	09 Jun 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

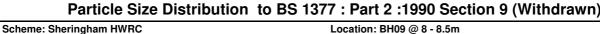
Sievi	ving	Specification for Highway	Sample Pi	roportions
rticle Size	o(D)	Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 1B,	Medium GRAVEL	4
75	100	6E/6R, 6M.	Fine GRAVEL	1
63	100		Coarse SAND	5
37.5	100		Medium SAND	52
20	100		Fine SAND	37
14	98		Silt & Clay	1
10	97			
6.3	96		Grading	Analysis
5	96	Please be aware that we only report	D100	14
2	95	compliance with specifications using	D60	0.281
1.18	95	'simple acceptance' as a guide as	D10	0.101
0.600	90	the specifications for the material as	Uniformity Coefficient ¹	3
0.425	84	well as the methodology for testing		
0.300	66	are well established and take into	Descr	iption
0.212	38	account uncertainty in their	Light brown, slightly grave	elly, fine and medium
0.063	1	formulation.	SAND. Gravel is sub-ang and medium flint.	
0.063	1	formulation.	SAND. Gravel is su	

16

Moisture content % (BS1377-Part 2, 1990)

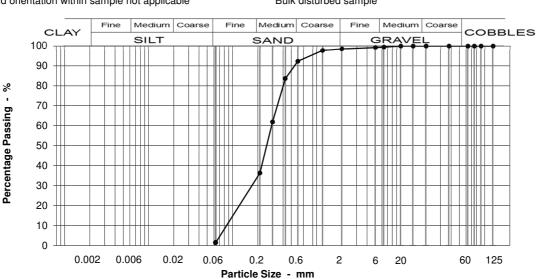
This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

S



Community & Environmental Services FAO N Young Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our reference No. 0000-BH09-B16-612

Our Project No.	102894
Your Sample Ref.	16
Your Order No.	708523
Date Tested	03/05/2022
Date Report Issued	24 May 2022


nicola.young@norfolk.gov.uk

Page 1 of 1

Location and orientation within sample not applicable

Location: BH09 @ 8 - 8.5m Bulk disturbed sample

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Sievi	ng	Specification for Highway	Sample Pro	portions
Particle Size	0/ D	Works Classification	BOULDERS	0
mm	% Passing	Table 6/2	COBBLES	0
125	100	This material complies with the	Coarse GRAVEL	0
90	100	following material classes 1B,	Medium GRAVEL	1
75	100	6E/6R, 6M.	Fine GRAVEL	1
63	100		Coarse SAND	6
37.5	100		Medium SAND	56
20	100		Fine SAND	35
14	100		Silt & Clay	1
10	100			
6.3	99		Grading A	nalysis
5	99	Please be aware that we only report	D100	6
2	99	compliance with specifications using	D60	0.29
1.18	98	'simple acceptance' as a guide as	D10	0.10
0.600	92	the specifications for the material as	Uniformity Coefficient [!]	3
0.425	84	well as the methodology for testing	-	
0.300	62	are well established and take into	Descrip	otion
0.212	36	account uncertainty in their	Red, fine to medium SAND).
0.063	1	formulation.		

Moisture content % 24 (BS1377-Part 2, 1990)

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Test Code = 612

Jan Eller

Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services	Our Project No	102894
FAO N Young	Our Report and sample No	NNPL202204085-
Norfolk County Council	Your Sample Ref	B2
County Hall	Your Project or Order No	708523
Martineau Lane Norwich	Date Report Issued	01 June 2022
NR1 2SG	Date Tested	24 May 2022

Page 1 of 1

Determination of the California Bearing Ratio to BS 1377 : Part 4 : 1990 (Withdrawn)

Scheme	Sheringham HWRC		
Location	TP01 @ 0.7m Specimen: 1		
Date sampled	05 April 2022	Date received	05 April 2022
Sampled by	KN (NPL Staff)	Sample Mass	17.545kg
•	provided, it is available for inspection is only relate to the sample tested.	n. The accuracy of any informati	on provided by third parties cannot be
Material	Soil	Sample type	Bulk Disturbed
Description	Orangey-brown, fine to medium S	SAND.	

Supplier	Not applicable	e	Source	Ex site		
		Test Speci	men Preparation d	letails		
Location	Not applicable	e	Method of I	Division	Quarte	ering
Orientation	Not applicable	e	Preparation	n Method	Sieving	g, Natural Moisture Content
Retained 37.5mm	0.0	%	Retained 20	0mm	0.0	%
BS Method	3.4, 2.5kg Ra	ammer	Grading zo	ne	1	
Number of layers	3		Bulk Densi	ty	1.72	Mg/m ³
Blows per layer	62 Blows		Dry Density	y	1.66	Mg/m ³
Condition	Unsoaked		Init. Moistu	re Content	3.7	%

Test Results							
		CBR Value	Surface Modulus	s \$			
		%	Мра				
	Тор	14	>85	\$ The calculation of Surface Modulus is not covered			
	Bottom	16	>85	by UKAS accreditation			
	Mean Value	15	>85				
Moisture Content Method		Oven dried @ 105	5-110°C				
Moisture Content Top	%	3.5	Moisture Cor	nt. Bottom % 3.3			

Remarks

nicola.young@norfolk.gov.uk

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Jan Eller

Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services	Our Project No	102894
FAO N Young	Our Report and sample No	NNPL202204088-
Norfolk County Council	Your Sample Ref	B2
County Hall	Your Project or Order No	708523
Martineau Lane	Date Report Issued	01 June 2022
Norwich NR1 2SG	Date Tested	13 May 2022

Page 1 of 1

Determination of the California Bearing Ratio to BS 1377 : Part 4 : 1990 (Withdrawn)

Scheme	Sheringham HW	/RC				
Location	TP02 @ 0.7m	Specimen: 1				
Date sampled	05 April 2022		Date receive	ed	05 April 2022	
Sampled by	KN (NPL Staff)		Sample Mas	s	25.82kg	
	rovided, it is availa only relate to the		The accuracy of ar	ny information	provided by third parties cann	ot be
Material	Soil		Sample type)	Bulk Disturbed	
Description	Yellowish brown	, medium SAND.				
Supplier	Not applicable		Source	Ex site		
		Test Specime	en Preparation de	etails		
Location	Not applicable		Method of D	ivision	Quartering	
Orientation	Not applicable		Preparation	Method	Sieving, Natural Moisture	Content
Retained 37.5mm	0.0	%	Retained 20	mm	0.0 %	
BS Method	3.4, 2.5kg Ram	mer	Grading zor	ne	1	
Number of layers	3		Bulk Density	у	1.89 Mg/m ³	
Blows per layer	62 Blows		Dry Density		1.80 Mg/m ³	
Condition	Unsoaked		Init. Moistur	e Content	4.7 %	
		Тє	est Results			
		CBR Value	Surface Modulu	us \$		
		%	Мра			
	Тор	18	>85	¢ The color	lation of Surface Modulus is n	ot onvorad
	Bottom	22	>85	φ The calcul	by UKAS accreditation	
Moisture Content Method		Oven dried @ 105	-110°C			
Moisture Content Top	%	4.7	Moisture Co	ont. Bottom	% 4.7	

Remarks

nicola.young@norfolk.gov.uk

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Jan Eller

Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services
FAO N Young
Norfolk County Council
County Hall
Martineau Lane
Norwich
NR1 2SG

Our Project No 102894 NNPL2022040812-Our Report and sample No Your Sample Ref B2 Your Project or Order No 708523 Date Report Issued 01 June 2022 Date Tested 26 April 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

Determination of the California Bearing Ratio to BS 1377 : Part 4 : 1990 (Withdrawn)

Scheme	Sheringham HWRC	Sheringham HWRC				
Location	TP03 @ 0.6m Specimen: 2					
Date sampled	05 April 2022	Date received	05 April 2022			
Sampled by	KN (NPL Staff)	Sample Mass	20.01kg			
If a comple cortificate u	rea provided, it is available for increation	The ecoureou of envinforme	tion provided by third partice connet be			

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Material	Soil	Sample type	Bulk Disturbed
Description	Orangish brown, gravelly, sand	ly, CLAY. Gravel is angular to subrout	nded fine flint.
Supplier	Not applicable	Source Ex site	
	Test Spec	cimen Preparation details	
Location	Not applicable	Not applicable Method of Division	
Orientation	Not applicable	Preparation Method	Sieving, Natural Moisture Content
Retained 37.5mm	0.0 %	Retained 20mm	1.1 %
BS Method	3.4, 2.5kg Rammer	Grading zone	2
Number of layers	3	Bulk Density	2.15 Mg/m ³
Blows per layer	62 Blows	Dry Density	1.82 Mg/m ³
Condition	Soaked	Init. Moisture Content	18 %

		CBR Value	Surface Modulu	us \$
		%	Мра	
	Тор	1.7	<25	\$ The calculation of Surface Modulus is not covered
	Bottom	1.5	<25	by UKAS accreditation
	Mean Value	1.6	<25	
Moisture Content Method		Oven dried @ 105-110	0°C	
Moisture Content Top	%	18	Moisture Co	ont. Bottom % 18

Remarks

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Jan Eller

Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services	Our Project No	102894
FAO N Young	Our Report and sample No	NNPL2022040815-
Norfolk County Council	Your Sample Ref	B2
County Hall	Your Project or Order No	708523
Martineau Lane	Date Report Issued	17 May 2022
Norwich NR1 2SG	Date Tested	26 April 2022

Page 1 of 1

Determination of the California Bearing Ratio to BS 1377 : PART 4 : 1990 (Withdrawn)

Sheringham HWF	IC			
TP04 @ 0.7m	Specimen: 2			
05 April 2022		Date receive	ed	05 April 2022
KN (NPL Staff)		Sample Mas	ss	22.86kg
		The accuracy of a	ny information	provided by third parties cannot be
Soil		Sample typ	e	Bulk Disturbed
Light brown, sand	y SILT.			
Not applicable		Source	Ex site	
	Test Specime	n Preparation d	etails	
Not applicable	Not applicable		Division	Quartering
Not applicable	Not applicable		Method	Sieving, Natural Moisture Content
0.0 %	0.0 %		mm	0.0 %
3.4, 2.5kg Ramm	3.4, 2.5kg Rammer		у	2.19 Mg/m ³
3		Dry Density		1.94 Mg/m ³
62 Blows		Init. Moistu	re Content	14 %
Soaked				
	Те	st Results		
	CBR Value	Surface Modul	us \$	
	%	Мра		
	4.3	45		
Тор	4.5	40	¢ The acless	Ilation of Surface Modulus is not covered
	TP04 @ 0.7m 05 April 2022 KN (NPL Staff) s provided, it is availabi ults only relate to the sa Soil Light brown, sand Not applicable Not applicable Not applicable 0.0 % 3.4, 2.5kg Ramm 3 62 Blows Soaked	05 April 2022 KN (NPL Staff) s provided, it is available for inspection. ults only relate to the sample tested. Soil Light brown, sandy SILT. Not applicable Not applicable Not applicable 0.0 % 3.4, 2.5kg Rammer 3 62 Blows Soaked Te CBR Value	TP04 @ 0.7m Specimen: 2 05 April 2022 Date receive KN (NPL Staff) Sample Mage s provided, it is available for inspection. The accuracy of au alts only relate to the sample tested. Sample Mage Soil Sample tested. Soil Sample type Light brown, sandy SILT. Source Not applicable Source Not applicable Method of D Not applicable Preparation d Not applicable Preparation d 0.0 % Retained 20 3.4, 2.5kg Rammer Bulk Densite 3 Dry Density 62 Blows Init. Moistur Soaked Surface Module	TP04 @ 0.7m Specimen: 2 05 April 2022 Date received KN (NPL Staff) Sample Mass s provided, it is available for inspection. The accuracy of any information attribution only relate to the sample tested. Soil Soil Sample type Light brown, sandy SILT. Source Ex site Not applicable Source Ex site Test Specimen Preparation details Not applicable Method of Division Not applicable Preparation Method 0.0 % Retained 20mm 3.4, 2.5kg Rammer Bulk Density 3 Dry Density 62 Blows Init. Moisture Content Soaked Surface Modulus \$

Moisture Content Top%13Moisture Cont. Bottom%13

Remarks

nicola.young@norfolk.gov.uk

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Jan Eller

Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services	Our Project No	102894
FAO N Young	Our Report and sample No	NNPL2022040819-
Norfolk County Council	Your Sample Ref	B2
County Hall	Your Project or Order No	708523
Martineau Lane	Date Report Issued	01 June 2022
Norwich NR1 2SG	Date Tested	24 May 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

Determination of the California Bearing Ratio to BS 1377 : Part 4 : 1990 (Withdrawn)

Scheme	Sheringham HWRC	Sheringham HWRC				
Location	TP05 @ 0.7m Specimen: 7					
Date sampled	05 April 2022	Date received	05 April 2022			
Sampled by	KN (NPL Staff)	Sample Mass	21.215kg			
If a sample certificate was provided, it is available for inspection		n The accuracy of any informa	tion provided by third parties cannot be			

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Material	Soil	Sample type	Bulk Disturbed		
Description	Orange, very gravelly, medium	SAND. Gravel is angular to sub-round	ded, fine to medium flint.		
Supplier	Not applicable	Source Ex site			
	Test Spec	imen Preparation details			
Location	Not applicable	Method of Division	Quartering		
Orientation	Not applicable	Preparation Method	Sieving, Natural Moisture Content		
Retained 37.5mm	4.8 %	Retained 20mm	6.7 %		
BS Method	3.4, 2.5kg Rammer	Grading zone	4		
Number of layers	3	Bulk Density	1.83 Mg/m ³		
Blows per layer	62 Blows	Dry Density	1.78 Mg/m ³		
Condition	Unsoaked	Init. Moisture Content	3.0 %		

Test Results						
		CBR Value S	Surface Modulu	s \$		
		%	Мра			
Тор 10.0		10.0	77	\$ The calculation of Surface Modulus is not covered		
	Bottom	15	>85	by UKAS accreditation		
Moisture Content Method		Oven dried @ 105-110°	°C			
Moisture Content Top	%	2.9	Moisture Co	nt. Bottom % 2.9		

Remarks

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Jan Eller

Email: civil.laboratory@norsegroup.co.uk

FAO N YoungOur Report and sample NoNNPL2022040823-Norfolk County CouncilYour Sample RefB2County HallYour Project or Order No708523Martineau LaneDate Report Issued01 June 2022NorwichDate Tested24 May 2022	Community & Environmental Services	Our Project No	102894
County Hall Your Project or Order No 708523 Martineau Lane Date Report Issued 01 June 2022 Norwich Date Tested 24 May 2022	FAO N Young	Our Report and sample No	NNPL2022040823-
Martineau Lane Date Report Issued 01 June 2022 Norwich Date Tested 24 May 2022	Norfolk County Council	Your Sample Ref	B2
Norwich Date Report Issued 01 June 2022	,	Your Project or Order No	708523
Data Testad 24 May 2022		Date Report Issued	01 June 2022
		Date Tested	24 May 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

Determination of the California Bearing Ratio to BS 1377 : Part 4 : 1990 (Withdrawn)

Scheme	Sheringham HWR	C		
Location	TP06 @ 0.7m	Specimen: 1		
Date sampled	05 April 2022		Date received	05 April 2022
Sampled by	KN (NPL Staff)		Sample Mass	19.035kg
If a sample certificate was proguaranteed. These results			The accuracy of any inform	nation provided by third parties cannot be
Material	Soil		Sample type	Bulk Disturbed
Description	Orange, silty fine t	o medium SANI	Э.	
Supplier	Not applicable		Source Ex site	9
		Test Specim	en Preparation details	
Location	Not applicable		Method of Division	Quartering
Orientation	Not applicable		Preparation Method	Sieving, Natural Moisture Content
Retained 37.5mm	0.0 %)	Retained 20mm	0.0 %
BS Method	3.4, 2.5kg Ramm	er	Grading zone	1
Number of layers	3		Bulk Density	1.73 Mg/m ³
Blows per layer	62 Blows		Dry Density	1.65 Mg/m ³
Condition	Unsoaked		Init. Moisture Conte	ent 5.5 %
		т	est Results	
	(CBR Value	Surface Modulus \$	
		%	Мра	
	Тор	13	>85 ¢ Tho	e calculation of Surface Modulus is not covered
	Bottom	19	>85	by UKAS accreditation
Moisture Content Method	0	ven dried @ 10	5-110°C	
Moisture Content Top	% 4.	9	Moisture Cont. Bott	tom % 4.9

Remarks

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Jan Eller

Test Code =644

Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services	Our Project No	102894
FAO N Young	Our Report and sample No	NNPL2022040826-
Norfolk County Council	Your Sample Ref	B2
County Hall	Your Project or Order No	708523
Martineau Lane	Date Report Issued	01 June 2022
Norwich NR1 2SG	Date Tested	13 May 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

Determination of the California Bearing Ratio to BS 1377 : Part 4 : 1990 (Withdrawn)

Scheme	Sheringham HWF	RC			
Location	TP07 @ 0.6m	Specimen: 1			
Date sampled	05 April 2022		Date received		05 April 2022
Sampled by	KN (NPL Staff)		Sample Mass		18.925kg
If a sample certificate was pr guaranteed. These results			The accuracy of any	information p	provided by third parties cannot be
Material	Soil		Sample type		Bulk Disturbed
Description	Orange, fine to m	edium SAND.			
Supplier	Not applicable		Source	Ex site	
		Test Specim	en Preparation det	ails	
Location	Not applicable		Method of Div	vision	Quartering
Orientation	Not applicable		Preparation M	lethod	Sieving, Natural Moisture Content
Retained 37.5mm	0.0 %	6	Retained 20mm		0.0 %
BS Method	3.4, 2.5kg Ramm	ner	Grading zone		1
Number of layers	3		Bulk Density		1.79 Mg/m ³
Blows per layer	62 Blows		Dry Density		1.71 Mg/m³
Condition	Unsoaked		Init. Moisture	Content	4.5 %
		т	est Results		
		CBR Value	Surface Modulus	\$	
		%	Мра		
	Тор	13	>85		ation of Surface Modulus is not covere
	Bottom	16	>85	φ τη ς calcul	by UKAS accreditation
Moisture Content Method	C	Oven dried @ 105	5-110°C		
Moisture Content Top	% 4	.5	Moisture Con	t. Bottom	% 4.6

Remarks

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Jan Eller

Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services	Our Project No	102894
FAO N Young	Our Report and sample No	NNPL2022040830-
Norfolk County Council	Your Sample Ref	B2
County Hall	Your Project or Order No	708523
Martineau Lane	Date Report Issued	01 June 2022
Norwich NR1 2SG	Date Tested	24 May 2022

nicola.young@norfolk.gov.uk

Page 1 of 1

Determination of the California Bearing Ratio to BS 1377 : Part 4 : 1990 (Withdrawn)

Scheme	Sheringham HWRC					
Location	TP08 @ 0.7m S	Specimen: 1				
Date sampled	05 April 2022		Date receive	ed	05 Api	ril 2022
Sampled by	KN (NPL Staff)		Sample Mas	s	21.535	5kg
	s provided, it is available t ults only relate to the sam		The accuracy of an	y information	provided b	y third parties cannot be
Material	Soil		Sample type	•	Bulk D	Visturbed
Description	Orangey-brown, fine	to medium SA	ND.			
Supplier	Not applicable		Source	Ex site		
	т	est Specime	n Preparation de	etails		
Location	Not applicable		Method of D	ivision	Quarte	ering
Orientation	Not applicable		Preparation	Preparation Method		g, Natural Moisture Content
Retained 37.5mm	4.0 %		Retained 20	mm	4.9	%
BS Method	3.4, 2.5kg Rammer		Grading zon	e	4	
Number of layers	3		Bulk Density	y	1.89	Mg/m ³
Blows per layer	62 Blows		Dry Density		1.79	Mg/m³
Condition	Unsoaked		Init. Moistur	e Content	6.0	%
		Те	st Results			
	CE	BR Value	Surface Modulu	ıs \$		
		%	Мра			
	Тор	24	>85	ф Т Ь с с 1 с 1		
\$700 \$ The Bottom 34 >85		ъ i ne calcu	\$ The calculation of Surface Modulus is not covered by UKAS accreditation			

Moisture Content Method		Oven drie	d@105-110°C		
Moisture Content Top	%	5.5	Moisture Cont. Bottom	%	5.4

Remarks

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory

Jan Eller

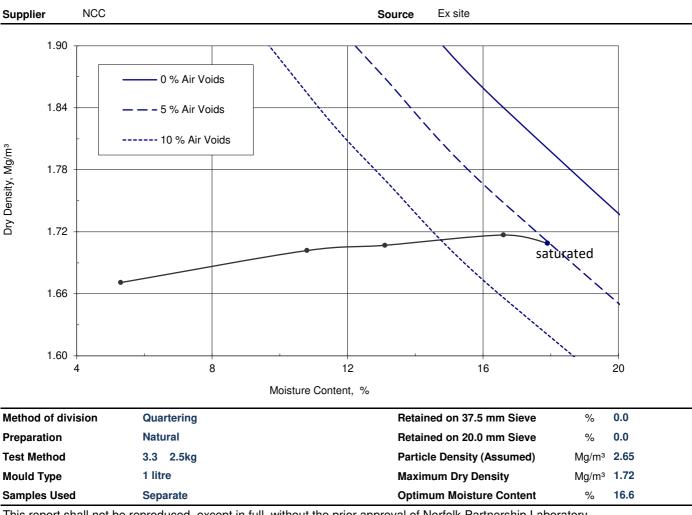
Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services

Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our Project No102894Our Report No. No04086-Your Sample RefB3Your Project or Order No708523Date Report Issued09 Jun 2022

Page 1 of 1

nicola.young@norfolk.gov.uk


Determination of Dry Density/Moisture Content Relationship to BS 1377-4: 1990 : Section 3 (Withdrawn)

Scheme Sherin	ngham HWRC		
Location TP01		Depth 1.8m	
Date received	05 April 2022	Date tested 09 May 2022	
Sample type	Bulk Disturbed	Sample Mass 12kg	
Date Sampled	05 April 2022	Sampled by KN (NPL Staff)	
	4		

Grading zone

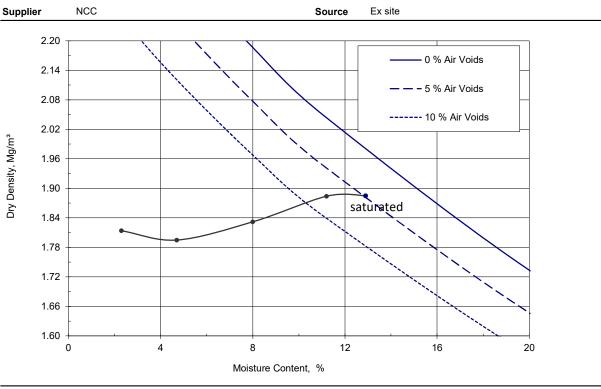
If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Description Orangey-brown, fine to medium SAND.

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory **Remarks**

Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services	Our Project No	102894
Norfolk County Council	Our Report No. No	04088-
County Hall Martineau Lane	Your Sample Ref	B2
Norwich	Your Project or Order No	708523
NR1 2SG	Date Report Issued	26 Apr 2022


nicola.young@norfolk.gov.uk

Page 1 of 1

Determination of Dry Density/Moisture Content Relationship to BS 1377 : Part 4 : 1990 : Section 3

Scheme	Shering	gham HWRC		
Location	TP02		Depth	0.7m
Date receiv	ved	05 April 2022	Date tested	22 April 2022
Sample typ	e	Bulk Disturbed	Sample Mass	15kg
Date Samp	led	05 April 2022	Sampled by	KN (NPL Staff)
If a sample certificate was provided, it is available for inspection. guaranteed. These results only relate to the sample tested.			The accuracy of any info	rmation provided by third parties cannot be

Description Yellowish brown fine and medium SAND

Method of division	Quartering	Retained on 37.5 mm Sieve	%	0.0
Preparation	Natural	Retained on 20.0 mm Sieve	%	0.0
Test Method	3.3 2.5kg	Particle Density (Assumed)	Mg/m³	2.65
Mould Type	1 litre	Maximum Dry Density	Mg/m³	1.89
Samples Used	Separate	Optimum Moisture Content	%	12.9

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory **Remarks**

Simon Holden (Operations Manager)

Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services

Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG

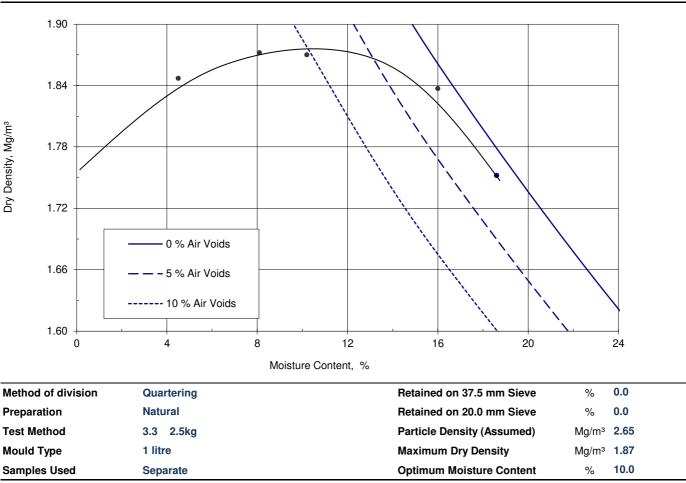
102894 **Our Project No Our Report No. No** 40812-B2 Your Sample Ref Your Project or Order No 708523 09 Jun 2022 **Date Report Issued**

Page 1 of 1

nicola.young@norfolk.gov.uk

1

Determination of Dry Density/Moisture Content Relationship to BS 1377-4: 1990 : Section 3 (Withdrawn)


Scheme	eme Sheringham HWRC			
Location	TP03		Depth	0.6m
Date receiv	ved	05 April 2022	Date tested	04 May 2022
Sample typ	be	Bulk Disturbed	Sample Mass	0kg
Date Samp	led	05 April 2022	Sampled by	KN (NPL Staff)

Grading zone

Description

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Orangish brown, gravelly, sandy, CLAY. Gravel is angular to sub-rounded fine flint. NCC Ex site Supplier Source

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory Remarks

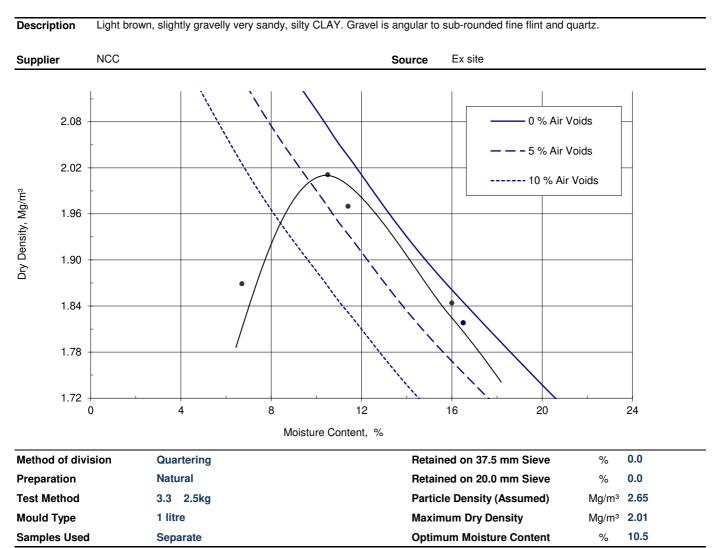
Email: civil.laboratory@norsegroup.co.uk

Community &	Environmental	Services
-------------	---------------	----------

Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG

102894 **Our Project No Our Report No. No** 40815-B2 Your Sample Ref Your Project or Order No 708523 09 Jun 2022 **Date Report Issued**

Page 1 of 1


nicola.young@norfolk.gov.uk

Determination of Dry Density/Moisture Content Relationship to BS 1377-4: 1990 : Section 3 (Withdrawn)

Scheme She	ringham HWRC			
Location TP0	4	Depth	0.7m	
Date received	05 April 2022	Date tested	24 April 2022	
Sample type	Bulk Disturbed	Sample Mass	15kg	
Date Sampled	05 April 2022	Sampled by	KN (NPL Staff)	
Grading zone	1			

Grading zone

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

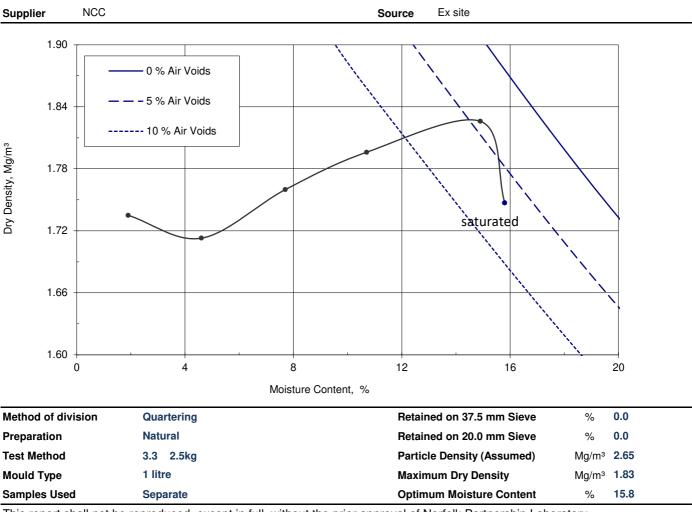
This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory Remarks

Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services

Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our Project No102894Our Report No. No40820-Your Sample RefB3Your Project or Order No708523Date Report Issued09 Jun 2022

Page 1 of 1


nicola.young@norfolk.gov.uk

Determination of Dry Density/Moisture Content Relationship to BS 1377-4: 1990 : Section 3 (Withdrawn)

Scheme Sh	eringham HWRC		
Location TP	05	Depth	1.7m
Date received	05 April 2022	Date tested	
Sample type	Bulk Disturbed	Sample Mass	0kg
Date Sampled	05 April 2022	Sampled by	KN (NPL Staff)
Grading zone	1		

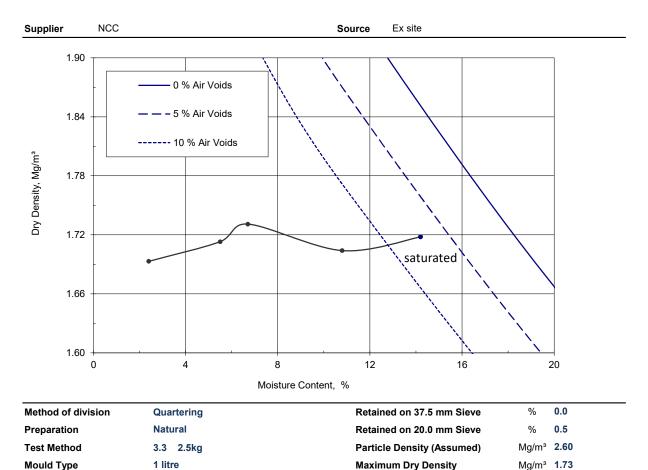
If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Description Yellowish-brown, slightly gravelly, fine to medium SAND. Gravel is angular to sub-rounded, fine to medium flint.

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory **Remarks**

Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services	Our Project No	102894
Norfolk County Council	Our Report No. No	40823-
County Hall Martineau Lane	Your Sample Ref	B2
Norwich	Your Project or Order No	708523
NR1 2SG	Date Report Issued	26 Apr 2022


nicola.young@norfolk.gov.uk

Page 1 of 1

Determination of Dry Density/Moisture Content Relationship to BS 1377 : Part 4 : 1990 : Section 3

Scheme	Shering	gham HWRC		
Location	TP06		Depth	0.7m
Date receiv	red	05 April 2022	Date tested	22 April 2022
Sample typ	е	Bulk Disturbed	Sample Mass	15kg
Date Samp	led	05 April 2022	Sampled by	KN (NPL Staff)
lf a sample oguaranteed.		e was provided, it is available for inspection. e results only relate to the sample tested.	The accuracy of any info	rmation provided by third parties cannot be

Description Orange slightly gravelly fine to coarse SAND. Gravel is angular to rounded fine to coarse flint.

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory **Remarks**

Separate

6.7

%

Samples Used

Optimum Moisture Content

Email: civil.laboratory@norsegroup.co.uk

Community &	Environmental	Services
-------------	---------------	----------

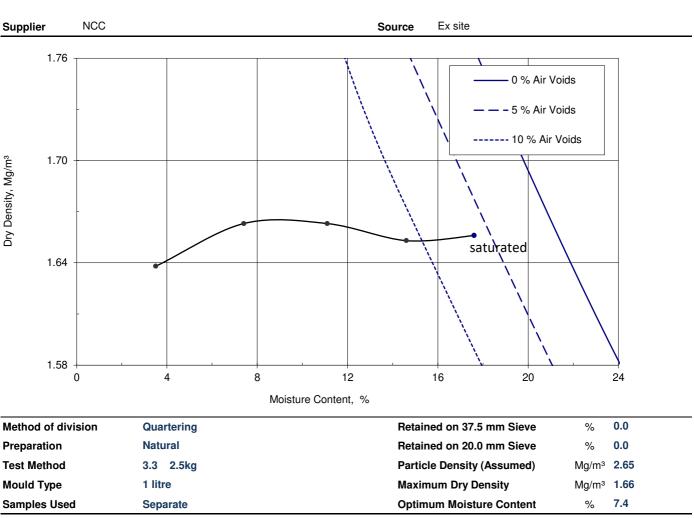
Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our Project No102894Our Report No. No40827-Your Sample RefB3Your Project or Order No708523Date Report Issued09 Jun 2022

Page 1 of 1

nicola.young@norfolk.gov.uk

1

Determination of Dry Density/Moisture Content Relationship to BS 1377-4: 1990: Section 3 (Withdrawn)


Scheme She	eringham HWRC			
Location TPC)7	Depth	1.7m	
Date received	05 April 2022	Date tested	04 May 2022	
Sample type	Bulk Disturbed	Sample Mass	13kg	
Date Sampled	05 April 2022	Sampled by	KN (NPL Staff)	

Yellowish-brown slightly gravelly fine to coarse SAND. Gravel is angular to sub-rounded fine and medium flint.

Grading zone

Description

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

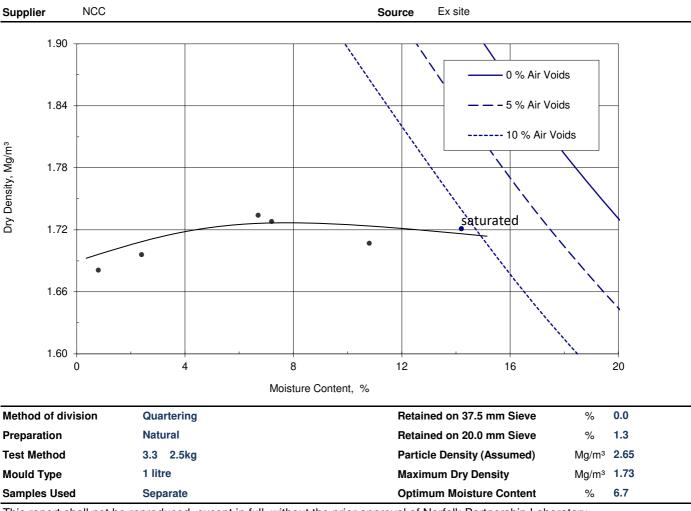
This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory **Remarks**

Email: civil.laboratory@norsegroup.co.uk

Community & Environmental Services

Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG Our Project No102894Our Report No. No40831-Your Sample RefB3Your Project or Order No708523Date Report Issued09 Jun 2022

Page 1 of 1


nicola.young@norfolk.gov.uk

Determination of Dry Density/Moisture Content Relationship to BS 1377-4: 1990 : Section 3 (Withdrawn)

Scheme S	Sheringham HWRC		
Location	FP08	Depth	1.7m
Date receive	d 05 April 2022	Date tested	13 May 2022
Sample type	Bulk Disturbed	Sample Mass	11kg
Date Sample	d 05 April 2022	Sampled by	KN (NPL Staff)
Grading zon	e 2		

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

Description Orangey-brown slightly gravelly fine and medium SAND. Gravel is angular to sub-angular fine and medium flint.

This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory **Remarks**

Appendix G

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

22/03570 1

Date: 25 April, 2022

Client:

Norse Eastern Ltd t/a Norse Highways 280 Fifers Lane Norwich Norfolk NR6 6EQ

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Josh Thompson/Sharon Woods; Simon Holden Sheringham HWRC 102894 PN05037679 12/04/22 12/04/22 25/04/22

Approved by:

Ten

Danielle Brierley Deputy Client Services Supervisor

Envirolab Job Number: 22/03570

Client Project Name: Sheringham HWRC

Client Project Ref: 102894

					onentito	ject Ref: 10	2034			
Lab Sample ID	22/03570/1	22/03570/2	22/03570/3	22/03570/4	22/03570/5	22/03570/6	22/03570/7			
Client Sample No	1	2	1	3	1	2	1			
Client Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04			
Depth to Top	0.10	0.70	0.10	1.40	0.10	0.60	0.10			
Depth To Bottom									ion	
Date Sampled	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22		etect	ų.
Sample Type	Soil - ES	Soil - B	Soil - ES	Soil - B	Soil - ES	Soil - B	Soil - ES		Limit of Detection	Method ref
Sample Matrix Code	6AE	1	6A	1A	6A	6	6AE	Units	Limit	Meth
% Stones >10mm _A	<0.1	<0.1	10.7	<0.1	3.8	<0.1	<0.1	% w/w	0.1	A-T-044
Asbestos in soil _D #	NAD	-	NAD	-	-	NAD	NAD			A-T-045
Asbestos Matrix (visual) _D	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope) _D	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	-	N/A	-	-	N/A	N/A			A-T-045
pH₀ ^{M#}	7.65	-	7.69	-	-	8.11	7.37	рН	0.01	A-T-031s
pH BRE _D ^{M#}	-	8.18	-	8.14	7.74	-	-	рН	0.01	A-T-031s
Ammonium NH4 BRE (water sol 2:1) _D	-	<1.00	-	<1.00	1.25	-	-	mg/l	1	A-T-033s
Chloride BRE, SO4 equiv. (water sol 2:1)D ^{M#}	-	<7	-	<7	<7	-	-	mg/l	7	A-T-026s
Nitrate BRE, SO4 equiv. (water sol 2:1)D	-	<0.4	-	0.8	13.3	-	-	mg/l	0.4	A-T-026s
Sulphate (water sol 2:1) ^{D^{M#}}	<0.01	-	<0.01	-	-	<0.01	<0.01	g/l	0.01	A-T-026s
Sulphate BRE (water sol 2:1) ^{D^{M#}}	-	<10	-	<10	<10	-	-	mg/l	10	A-T-026s
Sulphate (acid soluble) _D ^{M#}	230	-	<200	-	-	<200	280	mg/kg	200	A-T-028s
Sulphate BRE (acid sol) _D ^{M#}	-	<0.02	-	<0.02	0.03	-	-	% w/w	0.02	A-T-028s
Sulphur BRE (total)₀	-	<0.01	-	<0.01	0.02	-	-	% w/w	0.01	A-T-024s
Magnesium BRE (water sol 2:1) _D	-	2	-	2	13	-	-	mg/l	1	A-T-SOLMETS
Cyanide (total) _A ^{M#}	<1	-	<1	-	-	<1	۲	mg/kg	1	A-T-042sTCN
Phenols - Total by HPLC _A	<0.2	-	<0.2	-	-	<0.2	<0.2	mg/kg	0.2	A-T-050s
Sulphide _A	<5	-	<5	-	-	<5	<5	mg/kg	5	A-T-043-s
Sulphur (elemental) _D ^{M#}	<5	-	<5	-	-	<5	<5	mg/kg	5	A-T-029s
Organic matter Default _D ^{M#}	1.3	-	1.0	-	-	0.5	1.8	% w/w	0.1	A-T-032 OM
Arsenic ^{D^{M#}}	3	-	3	-	-	3	4	mg/kg	1	A-T-024s
Boron (water soluble)⊳	<1.0	-	<1.0	-	-	<1.0	<1.0	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	<0.5	-	<0.5	-	-	<0.5	<0.5	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	9	-	5	-	-	5	12	mg/kg	1	A-T-024s
Chromium _D ^{M#}	9	-	7	-	-	13	9	mg/kg	1	A-T-024s
Chromium (hexavalent)₀	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-040s
Lead _D ^{M#}	14	-	11	-	-	9	19	mg/kg	1	A-T-024s
Mercury⊳	<0.17	-	<0.17	-	-	<0.17	<0.17	mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	5	-	4	-	-	8	6	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	35	-	23	-	-	32	42	mg/kg	5	A-T-024s

Client Project Name: Sheringham HWRC

Lab Sample ID	22/03570/1	22/03570/2	22/03570/3	22/03570/4	22/03570/5	22/03570/6	22/03570/7			
Client Sample No	1	2	1	3	1	2	1			
Client Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04			
Depth to Top	0.10	0.70	0.10	1.40	0.10	0.60	0.10			
Depth To Bottom									ion	
Date Sampled	05-Apr-22		etect	۲,						
Sample Type	Soil - ES	Soil - B	Soil - ES	Soil - B	Soil - ES	Soil - B	Soil - ES	ú	Limit of Detection	Method ref
Sample Matrix Code	6AE	1	6A	1A	6A	6	6AE	Units	Limi	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	-	<0.01	-	-	<0.01	0.02	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	-	<0.02	-	-	<0.02	0.04	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	-	0.12	-	-	<0.04	0.19	mg/kg	0.04	A-T-019s
Benzo(a)pyrene₄ ^{M#}	<0.04	-	0.14	-	-	<0.04	0.25	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene ^{AM#}	<0.05	-	0.17	-	-	<0.05	0.32	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	-	0.08	-	-	<0.05	0.14	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	-	<0.07	-	-	<0.07	0.13	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06	-	0.15	-	-	<0.06	0.25	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	-	<0.04	-	-	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	-	0.27	-	-	<0.08	0.42	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene ^{AM#}	<0.03	-	0.09	-	-	<0.03	0.15	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	-	<0.03	-	-	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	<0.03	-	0.09	-	-	<0.03	0.14	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	<0.07	-	0.23	-	-	<0.07	0.35	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	<0.08	-	1.34	-	-	<0.08	2.40	mg/kg	0.01	A-T-019s

Client Project Name: Sheringham HWRC

						ject Ref: 10	2001			
Lab Sample ID	22/03570/1	22/03570/2	22/03570/3	22/03570/4	22/03570/5	22/03570/6	22/03570/7			
Client Sample No	1	2	1	3	1	2	1			
Client Sample ID	TP01	TP01	TP02	TP02	TP03	TP03	TP04			
Depth to Top	0.10	0.70	0.10	1.40	0.10	0.60	0.10			
Depth To Bottom									ion	
Date Sampled	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22		etect	if
Sample Type	Soil - ES	Soil - B	Soil - ES	Soil - B	Soil - ES	Soil - B	Soil - ES		Limit of Detection	Method ref
Sample Matrix Code	6AE	1	6A	1A	6A	6	6AE	Units	Limit	Meth
TPH UKCWG with Clean Up *C1										
Ali >C5-C6 _A [#]	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A [#]	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-055s
Ali >C21-C35 _A ^{M#}	6	-	2	-	-	<1	7	mg/kg	1	A-T-055s
Ali >C35-C44 _A	<1	-	<1	-	-	<1	1	mg/kg	1	A-T-055s
Total Aliphatics _A	6	-	2	-	-	<1	8	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-055s
Aro >C12-C16 _A	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	<1	-	<1	-	-	<1	7	mg/kg	1	A-T-055s
Aro >C21-C35 _A	<1	-	4	-	-	<1	27	mg/kg	1	A-T-055s
Aro >C35-C44 _A	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-055s
Total Aromatics _A	<1	-	4	-	-	<1	34	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C44)₄	6	-	6	-	-	<1	42	mg/kg	1	A-T-055s
BTEX - Benzene _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene ⁴	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s

Client Project Name: Sheringham HWRC

					Chent 10	ect Ref: 10	2034			
Lab Sample ID	22/03570/8	22/03570/9	22/03570/10	22/03570/11	22/03570/12	22/03570/13	22/03570/14			
Client Sample No	2	1	2	3	1	2	1			
Client Sample ID	TP04	TP05	TP06	TP06	TP07	TP07	TP08			
Depth to Top	0.70	0.10	0.70	2.40	0.10	0.60	0.10			
Depth To Bottom									ion	
Date Sampled	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22		etect	jt
Sample Type	Soil - B	Soil - ES	Soil - B	Soil - B	Soil - ES	Soil - B	Soil - ES	<i>"</i>	Limit of Detection	Method ref
Sample Matrix Code	6A	6AE	1	1A	6AE	1	6AE	Units	Limit	Meth
% Stones >10mm _A	<0.1	7.6	<0.1	<0.1	9.2	<0.1	8.9	% w/w	0.1	A-T-044
Asbestos in soil _d #	-	NAD	NAD	-	NAD	-	NAD			A-T-045
Asbestos Matrix (visual) _D	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope)⊳	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	-	N/A	N/A	-	N/A	-	N/A			A-T-045
pH _D ^{M#}	-	7.20	8.08	-	7.41	-	7.73	pН	0.01	A-T-031s
pH BRE _D ^{M#}	8.11	-	-	8.21	-	7.96	-	рН	0.01	A-T-031s
Ammonium NH4 BRE (water sol 2:1) _D	<1.00	-	-	1.27	-	1.17	-	mg/l	1	A-T-033s
Chloride BRE, SO4 equiv. (water sol 2:1)D ^{M#}	<7	-	-	<7	-	<7	-	mg/l	7	A-T-026s
Nitrate BRE, SO4 equiv. (water sol 2:1) $_{D}$	1.5	-	-	0.4	-	<0.4	-	mg/l	0.4	A-T-026s
Sulphate (water sol 2:1) ^{D^{M#}}	-	<0.01	<0.01	-	<0.01	-	<0.01	g/l	0.01	A-T-026s
Sulphate BRE (water sol 2:1) ^{D^{M#}}	<10	-	-	<10	-	<10	-	mg/l	10	A-T-026s
Sulphate (acid soluble) _D ^{M#}	-	<200	<200	-	<200	-	200	mg/kg	200	A-T-028s
Sulphate BRE (acid sol) _D ^{M#}	<0.02	-	-	<0.02	-	<0.02	-	% w/w	0.02	A-T-028s
Sulphur BRE (total)⊳	<0.01	-	-	<0.01	-	<0.01	-	% w/w	0.01	A-T-024s
Magnesium BRE (water sol 2:1) _D	8	-	-	2	-	6	-	mg/l	1	A-T-SOLMETS
Cyanide (total) _A ^{M#}	-	<1	<1	-	<1	-	<1	mg/kg	1	A-T-042sTCN
Phenols - Total by HPLC _A	-	<0.2	<0.2	-	<0.2	-	<0.2	mg/kg	0.2	A-T-050s
Sulphide _A	-	<5	<5	-	10	-	95	mg/kg	5	A-T-043-s
Sulphur (elemental) _D ^{M#}	-	<5	<5	-	<5	-	<5	mg/kg	5	A-T-029s
Organic matter Default _D ^{M#}	-	1.0	<0.1	-	1.2	-	0.9	% w/w	0.1	A-T-032 OM
Arsenic ^{D^{M#}}	-	4	5	-	4	-	4	mg/kg	1	A-T-024s
Boron (water soluble)⊳	-	<1.0	<1.0	-	<1.0	-	<1.0	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	-	<0.5	<0.5	-	<0.5	-	<0.5	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	-	10	2	-	9	-	8	mg/kg	1	A-T-024s
Chromium _D ^{M#}	-	6	4	-	7	-	6	mg/kg	1	A-T-024s
Chromium (hexavalent)₀	-	<1	<1	-	<1	-	<1	mg/kg	1	A-T-040s
Lead _D ^{M#}	-	12	2	-	12	-	13	mg/kg	1	A-T-024s
Mercury⊳	-	<0.17	<0.17	-	<0.17	-	<0.17	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	-	4	4	-	5	-	5	mg/kg	1	A-T-024s
Selenium _D ^{M#}	-	<1	<1	-	<1	-	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	-	31	9	-	31	-	26	mg/kg	5	A-T-024s

Client Project Name: Sheringham HWRC

Lab sample D20037002003701 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>olient i toj</th> <th></th> <th></th> <th></th> <th></th> <th></th>						olient i toj					
And shiple for Client Sample DTFP04TFP05TFP06TFP06TFP07 <th< td=""><td>Lab Sample ID</td><td>22/03570/8</td><td>22/03570/9</td><td>22/03570/10</td><td>22/03570/11</td><td>22/03570/12</td><td>22/03570/13</td><td>22/03570/14</td><td></td><td></td><td></td></th<>	Lab Sample ID	22/03570/8	22/03570/9	22/03570/10	22/03570/11	22/03570/12	22/03570/13	22/03570/14			
non-sector (1) non-se	Client Sample No	2	1	2	3	1	2	1			
Part of the pa	Client Sample ID	TP04	TP05	TP06	TP06	TP07	TP07	TP08			
PAH-16MS Image: state stat	Depth to Top	0.70	0.10	0.70	2.40	0.10	0.60	0.10			
PAH-16MS Image: state stat	Depth To Bottom									tion	
PAH-16MS Image: state stat	Date Sampled	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22		etect	ef
PAH-16MS Image: state stat	Sample Type	Soil - B	Soil - ES	Soil - B	Soil - B	Soil - ES	Soil - B	Soil - ES	s	t of D	od ro
Acenaphthene Matrix \sim 0.01 \sim 0.02	Sample Matrix Code	6A	6AE	1	1A	6AE	1	6AE	Unit	Limi	Meth
Acenaphthylene Machad Acenaphthylene	PAH-16MS										
Anthracene Mathracene Mathra	Acenaphthene _A ^{M#}	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-019s
Image: Section of the secti	Acenaphthylene _A ^{M#}	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-019s
Intercontant of a control of a con	Anthracene _A ^{M#}	-	<0.02	<0.02	-	<0.02	-	<0.02	mg/kg	0.02	A-T-019s
Benzo(b)fluoranthene, ^{M#} - <0.05 <0.05 - <0.05 - 0.09 mg/kg 0.05 A ^{-T-019s} Benzo(ghi)perylene, ^{M#} - <0.05	Benzo(a)anthracene₄ ^{M#}	-	<0.04	<0.04	-	<0.04	-	0.05	mg/kg	0.04	A-T-019s
Image: Constraint of the state of	Benzo(a)pyrene ^{A^{M#}}	-	<0.04	<0.04	-	<0.04	-	0.06	mg/kg	0.04	A-T-019s
Benzo(k)fluoranthene, ^{M#} - <0.07 <0.07 - <0.07 - <0.07 - <0.07 mg/kg 0.07 A ^{-101s} Chrysene, ^{M#} - <0.06	Benzo(b)fluoranthene _A ^{M#}	-	<0.05	<0.05	-	<0.05	-	0.09	mg/kg	0.05	A-T-019s
Chrysene ^{A,M#} · ·	Benzo(ghi)perylene _A ^{M#}	-	<0.05	<0.05	-	<0.05	-	<0.05	mg/kg	0.05	A-T-019s
Dibenzo(ah)anthracene, ^{M#} - - - -	Benzo(k)fluoranthene _A ^{M#}	-	<0.07	<0.07	-	<0.07	-	<0.07	mg/kg	0.07	A-T-019s
Discrizio (ani)antinatione) Image: Constrained for a constraine constrained for a constrained for a constraine const	Chrysene _A ^{M#}	-	<0.06	<0.06	-	<0.06	-	0.07	mg/kg	0.06	A-T-019s
Fluorene M# - <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <	Dibenzo(ah)anthracene _A ^{M#}	-	<0.04	<0.04	-	<0.04	-	<0.04	mg/kg	0.04	A-T-019s
Indeno(123-cd)pyrene ^{AM#} - < < < < < < < < A-T-019s Naphthalene A ^{M#} - <0.03	Fluoranthene ^{A^{M#}}	-	<0.08	<0.08	-	<0.08	-	0.12	mg/kg	0.08	A-T-019s
Naphthalene $A^{M\#}$ - <0.03 <0.03 <0.03 - <0.03 <0.03 $ <0.03$ <0.03 $ <0.03$ mg/kg 0.03 $A^{-T-019s}$	Fluorene _A ^{M#}	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-019s
	Indeno(123-cd)pyrene _A ^{M#}	-	<0.03	<0.03	-	<0.03	-	0.04	mg/kg	0.03	A-T-019s
Phenanthrene ^{M#} - <0.03 <0.03 - <0.03 - 0.05 mg/kg 0.03 ^{A-T-019s}	Naphthalene A ^{M#}	-	<0.03	<0.03	-	<0.03	-	<0.03	mg/kg	0.03	A-T-019s
	Phenanthrene _A ^{M#}	-	<0.03	<0.03	-	<0.03	-	0.05	mg/kg	0.03	A-T-019s
Pyrene ^{AM#} - <0.07 <0.07 - <0.07 - 0.10 mg/kg 0.07 ^{A-T-0195}	Pyrene₄ ^{M#}	-	<0.07	<0.07	-	<0.07	-	0.10	mg/kg	0.07	A-T-019s
Total PAH-16MS ^{M#} - <0.08 <0.08 - <0.08 - 0.58 mg/kg 0.01 A-T-019s	Total PAH-16MS₄ ^{M#}	-	<0.08	<0.08	-	<0.08	-	0.58	mg/kg	0.01	A-T-019s

Client Project Name: Sheringham HWRC

						ect Ref: 10				
Lab Sample ID	22/03570/8	22/03570/9	22/03570/10	22/03570/11	22/03570/12	22/03570/13	22/03570/14			
Client Sample No	2	1	2	3	1	2	1			
Client Sample ID	TP04	TP05	TP06	TP06	TP07	TP07	TP08			
Depth to Top	0.70	0.10	0.70	2.40	0.10	0.60	0.10			
Depth To Bottom									ion	
Date Sampled	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22	05-Apr-22		Limit of Detection	*
Sample Type	Soil - B	Soil - ES	Soil - B	Soil - B	Soil - ES	Soil - B	Soil - ES	~	t of D	Method ref
Sample Matrix Code	6A	6AE	1	1A	6AE	1	6AE	Units	Limi	Meth
TPH UKCWG with Clean Up *C1										
Ali >C5-C6 _A #	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10₄	-	<1	<1	-	<1	-	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	-	<1	<1	-	<1	-	<1	mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	-	<1	<1	-	<1	-	<1	mg/kg	1	A-T-055s
Ali >C16-C21 ^{A^{M#}}	-	<1	<1	-	<1	-	<1	mg/kg	1	A-T-055s
Ali >C21-C35 ^{AM#}	-	3	3	-	3	-	2	mg/kg	1	A-T-055s
Ali >C35-C44 _A	-	<1	<1	-	<1	-	<1	mg/kg	1	A-T-055s
Total Aliphatics _A	-	3	3	-	3	-	2	mg/kg	1	A-T-055s
Aro >C5-C7 _A [#]	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A [#]	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	-	<1	<1	-	<1	-	<1	mg/kg	1	A-T-055s
Aro >C10-C12 _A	-	<1	<1	-	<1	-	<1	mg/kg	1	A-T-055s
Aro >C12-C16 _A	-	<1	<1	-	<1	-	<1	mg/kg	1	A-T-055s
Aro >C16-C21 ^{AM#}	-	<1	<1	-	<1	-	2	mg/kg	1	A-T-055s
Aro >C21-C35 _A	-	<1	<1	-	<1	-	2	mg/kg	1	A-T-055s
Aro >C35-C44 _A	-	<1	<1	-	<1	-	<1	mg/kg	1	A-T-055s
Total Aromatics _A	-	<1	<1	-	<1	-	4	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C44)₄	-	3	3	-	4	-	6	mg/kg	1	A-T-055s
BTEX - Benzene _A #	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	-	<0.01	<0.01	-	<0.01	-	<0.01	mg/kg	0.01	A-T-022s

Client Project Name: Sheringham HWRC

Lab Sample ID	22/03570/15						
Client Sample No	4						
Client Sample ID	TP08						
Depth to Top	2.80						
Depth To Bottom						ion	
Date Sampled	05-Apr-22					etect	ef
Sample Type	Soil - B				ø	Limit of Detection	Method ref
Sample Matrix Code	1A				Units	Limi	Meth
% Stones >10mm _A	<0.1				% w/w	0.1	A-T-044
pH BRE _D ^{M#}	8.13				рН	0.01	A-T-031s
Ammonium NH4 BRE (water sol 2:1) _D	<1.00				mg/l	1	A-T-033s
Chloride BRE, SO4 equiv. (water sol 2:1)D ^{M#}	<7				mg/l	7	A-T-026s
Nitrate BRE, SO4 equiv. (water sol 2:1) $_{D}$	0.5				mg/l	0.4	A-T-026s
Sulphate BRE (water sol 2:1) ^{D^{M#}}	<10				mg/l	10	A-T-026s
Sulphate BRE (acid sol) ^{D^{M#}}	<0.02				% w/w	0.02	A-T-028s
Sulphur BRE (total)⊳	<0.01				% w/w	0.01	A-T-024s
Magnesium BRE (water sol 2:1) _D	2				mg/l	1	A-T-SOLMETS

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample, 9 = INCINERATOR ASH.

Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025. Superscript "M" indicates method accredited to MCERTS. Subscript "A" indicates analysis performed on the sample as received. Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve EPH CWG results have humics mathematically subtracted through instrument calculation TPH results "with Cleanup" indicates results cleaned up with Silica during extraction

EPH CWG GCxGC ID from TPH CWG

Where we have identified humic substances in any ID's from TPH CWG with Clean Up please note that the concentration of these

humic substances is not included in the quantified results and are included in the ID for information.

Please contact us if you need any further information.

v2

Envirolab Analysis Dates

Lab Sample ID	22/03570/1	22/03570/2	22/03570/3	22/03570/4	22/03570/5	22/03570/6	22/03570/7	22/03570/8	22/03570/9	22/03570/10	22/03570/11	22/03570/12
Client Sample No	1	2	1	3	1	2	1	2	1	2	3	1
Client Sample ID/Depth	TP01 0.10m	TP01 0.70m	TP02 0.10m	TP02 1.40m	TP03 0.10m	TP03 0.60m	TP04 0.10m	TP04 0.70m	TP05 0.10m	TP06 0.70m	TP06 2.40m	TP07 0.10m
Date Sampled	05/04/22	05/04/22	05/04/22	05/04/22	05/04/22	05/04/22	05/04/22	05/04/22	05/04/22	05/04/22	05/04/22	05/04/22
A-T-019s	20/04/2022		20/04/2022			20/04/2022	20/04/2022		20/04/2022	20/04/2022		20/04/2022
A-T-022s	21/04/2022		21/04/2022			21/04/2022	21/04/2022		21/04/2022	21/04/2022		21/04/2022
A-T-024s	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022
A-T-026s	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022
A-T-027s	22/04/2022		22/04/2022			22/04/2022	22/04/2022		22/04/2022	22/04/2022		22/04/2022
A-T-028s	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022	22/04/2022
A-T-029s	21/04/2022		21/04/2022			20/04/2022	20/04/2022		21/04/2022	21/04/2022		21/04/2022
A-T-031s	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022	21/04/2022
A-T-032 OM	22/04/2022		22/04/2022			22/04/2022	22/04/2022		22/04/2022	22/04/2022		22/04/2022
A-T-033s		25/04/2022		25/04/2022	25/04/2022			25/04/2022			25/04/2022	
A-T-040s	22/04/2022		22/04/2022			22/04/2022	22/04/2022		22/04/2022	22/04/2022		22/04/2022
A-T-042sTCN	21/04/2022		21/04/2022			21/04/2022	21/04/2022		21/04/2022	21/04/2022		21/04/2022
A-T-043-s	22/04/2022		22/04/2022			22/04/2022	22/04/2022		22/04/2022	22/04/2022		22/04/2022
A-T-044	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022
A-T-045	14/04/2022		14/04/2022			14/04/2022	14/04/2022		14/04/2022	14/04/2022		14/04/2022
A-T-050s	20/04/2022		20/04/2022			20/04/2022	20/04/2022		20/04/2022	20/04/2022		20/04/2022
A-T-055s	21/04/2022		21/04/2022			21/04/2022	21/04/2022		21/04/2022	21/04/2022		21/04/2022
A-T-SOLMETS		21/04/2022		21/04/2022	21/04/2022			21/04/2022			21/04/2022	

Lab Sample ID	22/03570/13	22/03570/14	22/03570/15
Client Sample No	2	1	4
Client Sample ID/Depth	TP07 0.60m	TP08 0.10m	TP08 2.80m
Date Sampled	05/04/22	05/04/22	05/04/22
A-T-019s		20/04/2022	
A-T-022s		21/04/2022	
A-T-024s	21/04/2022	21/04/2022	21/04/2022
A-T-026s	22/04/2022	22/04/2022	25/04/2022
A-T-027s		22/04/2022	
A-T-028s	22/04/2022	22/04/2022	22/04/2022
A-T-029s		21/04/2022	
A-T-031s	21/04/2022	21/04/2022	21/04/2022
A-T-032 OM		22/04/2022	
A-T-033s	25/04/2022		25/04/2022
A-T-040s		22/04/2022	
A-T-042sTCN		21/04/2022	
A-T-043-s		22/04/2022	
A-T-044	14/04/2022	14/04/2022	14/04/2022
A-T-045		14/04/2022	
A-T-050s		20/04/2022	
A-T-055s		21/04/2022	
A-T-SOLMETS	21/04/2022		21/04/2022

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

End of Report

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

22/03873 1

Date: 04 May, 2022

Client:

Norse Eastern Ltd t/a Norse Highways 280 Fifers Lane Norwich Norfolk NR6 6EQ

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Civil Lab/Josh Thompson/Sharon Woods; Simon Holden Sheringham HWRC 102894 PN05037954 22/04/22 22/04/22 04/05/22

Approved by:

Ten

Danielle Brierley Deputy Client Services Supervisor

Page 1 of 4

Client Project Name: Sheringham HWRC

Client Project Ref: 102894 22/03873/1 Lab Sample ID Client Sample No 10 Client Sample ID 09 5 Depth to Top Depth To Bottom 5.5 Limit of Detection 05-Apr-22 Date Sampled Method ref Sample Type Soil - B Units Sample Matrix Code 1A A-T-044 % Stones >10mm_A <0.1 % w/w 0.1 pH BRE_D^{M#} A-T-031s 8.46 pН 0.01 A-T-033s Ammonium NH4 BRE (water sol 2:1)D <1.00 mg/l 1 A-T-026s Chloride BRE, SO4 equiv. (water sol 2:1)DM# <7 mg/l 7 Nitrate BRE, SO4 equiv. (water sol 2:1)D A-T-026s <0.4 mg/l 0.4 A-T-026s Sulphate BRE (water sol 2:1)DM# 18 mg/l 10 Sulphate BRE (acid sol)_D^{M#} 0.02 A-T-028s <0.02 % w/w A-T-024s Sulphur BRE (total)_D <0.01 % w/w 0.01 Magnesium BRE (water sol 2:1)D <1 mg/l 1 A-T-SOLMETS

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample, 9 = INCINERATOR ASH.

Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025. Superscript "M" indicates method accredited to MCERTS. Subscript "A" indicates analysis performed on the sample as received. Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve EPH CWG results have humics mathematically subtracted through instrument calculation TPH results "with Cleanup" indicates results cleaned up with Silica during extraction

EPH CWG GCxGC ID from TPH CWG

Where we have identified humic substances in any ID's from TPH CWG with Clean Up please note that the concentration of these

humic substances is not included in the quantified results and are included in the ID for information.

Please contact us if you need any further information.

v2

Envirolab Analysis Dates

Lab Sample ID	22/03873/1
Client Sample No	10
Client Sample ID/Depth	09 5-5.5m
Date Sampled	05/04/22
A-T-024s	28/04/2022
A-T-026s	04/05/2022
A-T-028s	03/05/2022
A-T-031s	27/04/2022
A-T-033s	29/04/2022
A-T-044	28/04/2022
A-T-SOLMETS	03/05/2022

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

End of Report

Appendix H

Minutes 0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

15.0

20.0

25.0

30.0

Scheme:	Sheringham
Project No	102894
Trial Pit No.	7
Depth of Trial Pit (m)=	3.00
Length of Trial Pit (m)=	1.30
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000

0.46

0.79

1.06

1.26

1.42

1.54

1.66

1.76

1.85

1.93

2.01

2.33

2.55

2.74

2.92

2.54

2.21

1.94

1.74

1.58

1.46

1.34

1.24

1.15

1.07

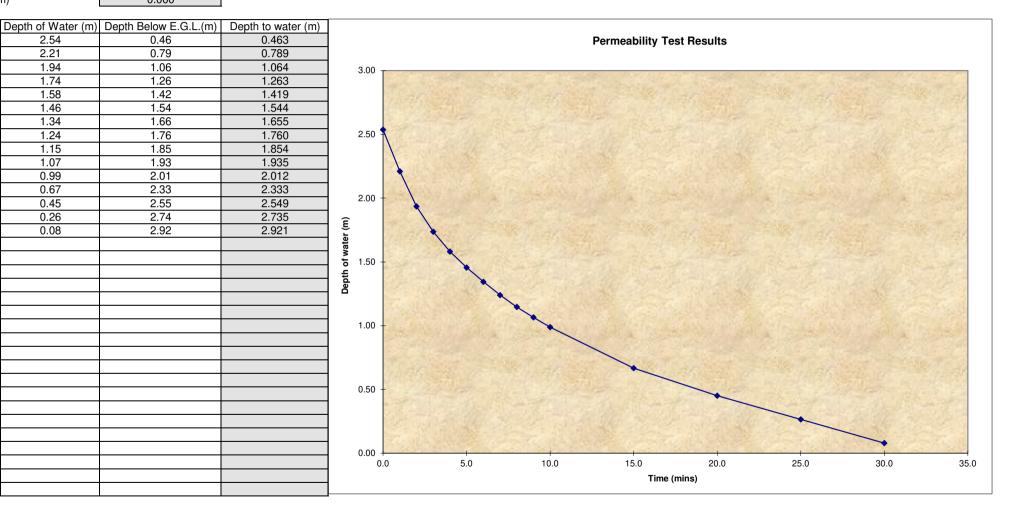
0.99

0.67

0.45

0.26

0.08


Run 1

Time of Emptying of Soakaway (Values to be checked on chart)

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	1.9030	1.2687	0.6343
Time (mins)	2	7	16

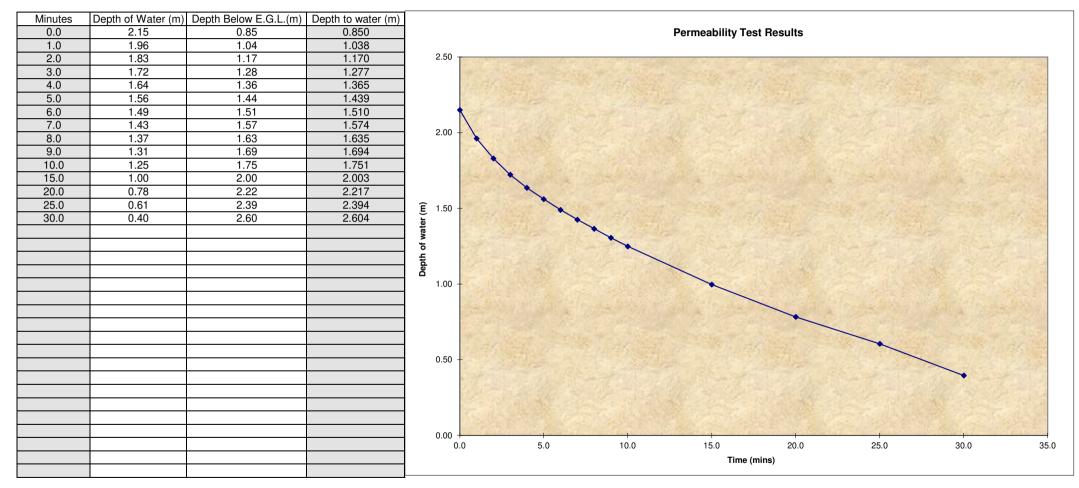
Gravel fill	Yes
Voids %	44.2

Infiltration Rate	
8.0E-05 m/sec	

Page 1

Scheme:	Sheringham
Project	102894
Trial Pit No.	7
Depth of Trial Pit (m)=	3.00
Length of Trial Pit (m)=	1.30
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000

Run 2


Time of Emptying of Soakaway

(Values to be checked on chart)

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	1.6129	1.0753	0.5376
Time (mins)	4	13	27

Gravel fill	Yes
Voids %	44.2

Infiltration Rate	
4.8E-05 m/sec	

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

15.0

20.0

25.0

30.0

40.0

Scheme:	Sheringham
Project	102894
Trial Pit No.	7
Depth of Trial Pit (m)=	3.00
Length of Trial Pit (m)=	1.30
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000

Run 3

Time of Emptying of Soakaway

(Values to be checked on chart)

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	1.8292	1.2195	0.6097
Time (mins)	5	17	31

Gravel fill	Yes
Voids %	44.2

Infiltration Rate	Mean
4.2E-05	5.3E-05 m/sec

Minutes 0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

15.0

20.0

25.0

30.0

40.0

Scheme:	Sheringham
Project No	102894
Trial Pit No.	8
Depth of Trial Pit (m)=	3.00
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000

0.44

0.75

1.00

1.20

1.36

1.49

1.59

1.68

1.76

1.83

1.89

2.17

2.38

2.53

2.66

2.89

2.56

2.25

2.00

1.80

1.64

1.51

1.41

1.32

1.24

1.17

1.11

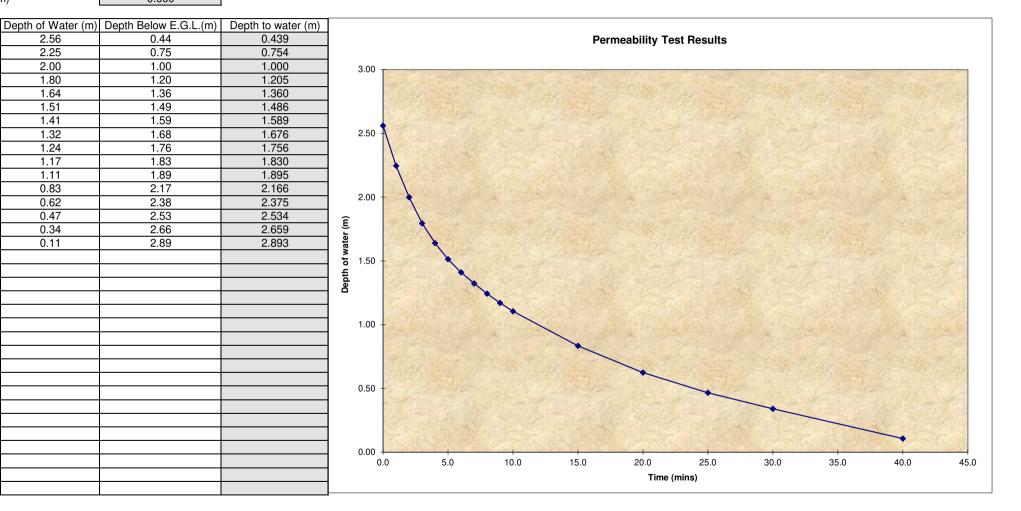
0.83

0.62

0.47

0.34

0.11


Run 1

Time of Emptying of Soakaway (Values to be checked on chart)

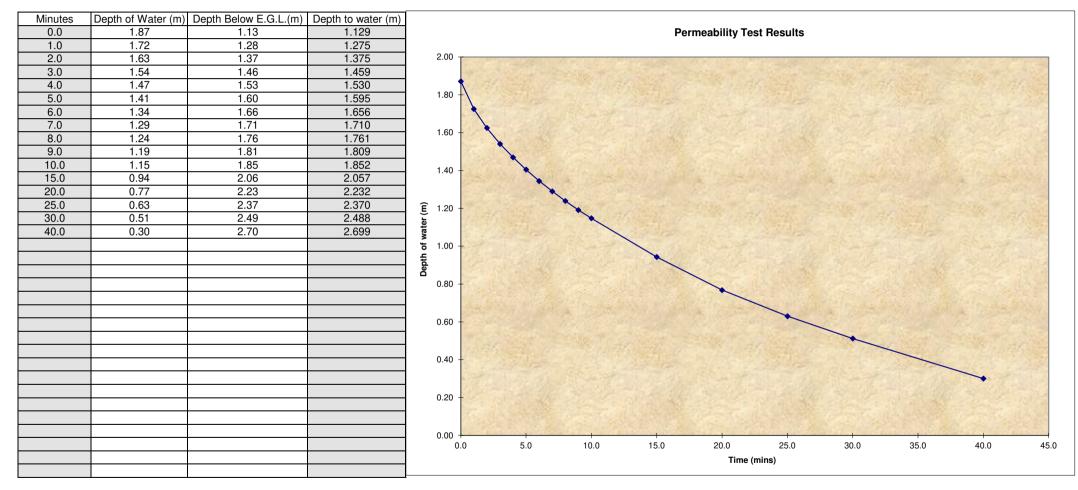
% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	1.9208	1.2805	0.6403
Time (mins)	2	8	20

Gravel fill	Yes
Voids %	44.2

Infiltration Rate	
6.5E-05 m/sec	

Scheme:	Sheringham
Project	102894
Trial Pit No.	8
Depth of Trial Pit (m)=	3.00
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000

Run 2


Time of Emptying of Soakaway

(Values to be checked on chart)

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	1.4036	0.9358	0.4679
Time (mins)	5	15	32

Gravel fill	Yes
Voids %	44.2

Infiltration Rate
Infiltration Rate 4.0E-05 m/sec

Minutes 0.0

1.0

2.0

3.0

4.0

5.0 6.0

7.0

8.0

9.0

10.0

15.0

20.0

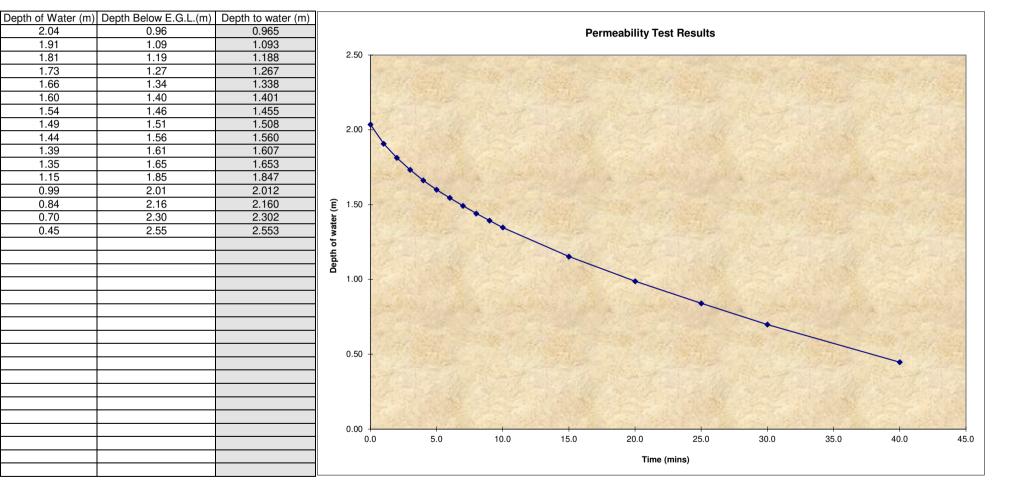
25.0

30.0

40.0

Scheme:	Sheringham
Project	102894
Trial Pit No.	8
Depth of Trial Pit (m)=	3.00
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000

Run 3


Time of Emptying of Soakaway

(Values to be checked on chart)

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	1.5264	1.0176	0.5088
Time (mins)	6	19	38

Gravel fill	Yes
Voids %	44.2

Infiltration Rate	Mean
3.5E-05	4.3E-05 m/sec

Appendix H Site Infiltration Testing - June 2023

Prepared by: Norfolk Partnership Laboratory, Norse Eastern Ltd, Martineau Lane, Norwich, Norfolk, NR1 2SG Telephone (01603) 578389

Factual Permeability Report Holt Road HWRC Sheringham Norfolk 104494 June 2023

Client: Community and Environmental Services Norfolk County Council County Hall Martineau Lane Norwich NR1 2SG

Registered office: 280 Fifers Lane, Norwich, NR6 6EQ Registered in England and Wales No. 07445476 Norfolk Partnership Laboratory is part of Norse Eastern Limited a subsidiary of the Norse Group, a company wholly owned by Norfolk County Council

i) Contents

1.0	Introduction	5
2.0	Geology	6
3.0	Site Investigation	7
3.1	Investigation Objectives	7
3.2	Preparatory Enabling Works	7
3.3		
3.4	Site Investigation Strategy	7
3.5	5 Site Sampling Strategy	7
3.6	Geotechnical Testing	7
3.7	Pollution prevention measures	7
4.0	Investigation Results	8
4.1	Ground conditions	8
4.2	Groundwater conditions	8
5.0	Infiltration Results	9

Appendices

- Appendix A Site location plan
- Appendix B Trialpit location plan
- Appendix C Trialpit Logs
- Appendix D Permeability test reports

ii) Distribution

Community and Environmental Services	1 сору
Norfolk Partnership Laboratory	1 сору

1.0 Introduction

This permeability investigation was carried out on land to the north of the eastern end of the access road to Sheringham Household Waste Recycling Centre (HWRC) on the A148 Holt Road, Sheringham, Norfolk (OSGR 616280 / 341026). Ms K Lange of Community and Environmental Services instructed Norfolk Partnership Laboratory (NPL) to carry out the work after acceptance of NPL's quotation. NPL provides a service within Norse Eastern Ltd.

The aim of this investigation was to determine the infiltration rates at various locations across the site advised by the client.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Although every effort has been made to give a true assessment of the condition of the site, it is possible that different ground conditions may exist in parts of the site that are neither recorded nor visible.

2.0 Geology

The geology of the region may be summarised as follows:

Pleistocene : Briton's Lane Sand and Gravel : Wroxham Crag Formation

The **Wroxham Crag Formation** comprises of a sheet of interbedded gravels, sands, silts and clays. The gravels are dominated by flint (up to c.80%) and by quartz and quartzite (up to c.60%), with far-travelled minor lithogies including Carboniferous chert, Rhaxella chert, Greensand chert, Spilsby Sandstone and felsic volcanic rocks from North Wales. The deposits are interpreted as estuarine and near-shore marine.

The **Britions Lane Sand and Gravel** which consists of horizontal, massive and low angle planar cross-bedded gravels and cobble gravels with thin seams of horizontal and rippled sand. The lithology has a distinctive high flint content (c.85-89%) of which the majority is of non-chatter marked variety (c.78-85%). The gravels also contain a wide range of far-travelled crystalline erratics including rocks of British and Scandinavian provenance.

3.0 Site Investigation

3.1 Investigation Objectives

The aim of this investigation is to obtain infiltration information on the site.

3.2 <u>Preparatory Enabling Works</u>

No preparatory enabling works were required.

3.3 <u>Works undertaken</u>

On 26 June 2023, four trial pits were excavated to a maximum depth of 1.00 metre. Infiltration testing in accordance with BRE 365 was carried out in all four pits.

The trial pits are numbered 1 to 4.

The locations of these excavations are shown on the plan in Appendix B.

3.4 Site Investigation Strategy

The site investigation was to obtain infiltration information on the site.

3.5 <u>Site Sampling Strategy</u>

No samples were retrieved from the trial pits.

3.6 <u>Geotechnical Testing</u>

No geotechnical testing was carried out as part of this investigation.

3.7 <u>Pollution prevention measures</u>

No pollution prevention measures were required on this site. The four trial pits were backfilled with gravel to enable the testing to be carried out.

4.0 Investigation Results

4.1 Ground conditions

4.1.1 Topsoil

Topsoil was recorded as the surface deposit in all of the Trial Pits. The topsoil was brown in colour and sandy. The thickness of the topsoil ranged from 0.20 metre in TP03 to 0.40 metre in TP04.

4.1.2 Britons Lane Sand and Gravel

Britons Lane Sand and Gravel was encountered below the Topsoil in all Trial Pit locations. The deposit comprised of yellowish brown, orangey brown and brown fine sand with some silt and clay. The thickness of the deposit ranged from 0.35 metre in TP02 to 0.70 metre in TP04. The Britons Lane Sand and Gravel was not proven at a maximum depth of 1.00 metre in TP04.

More detail can be seen on the Trial Pit Logs in Appendix C

4.1.3 Wroxham Crag

No Wroxham Crag deposits were positively identified during this investigation.

4.2 Groundwater conditions

No groundwater was encountered during the investigation.

5.0 Infiltration Results

Infiltration testing in accordance with BRE 365 was undertaken in TP01 to TP04. The results are tabulated below:

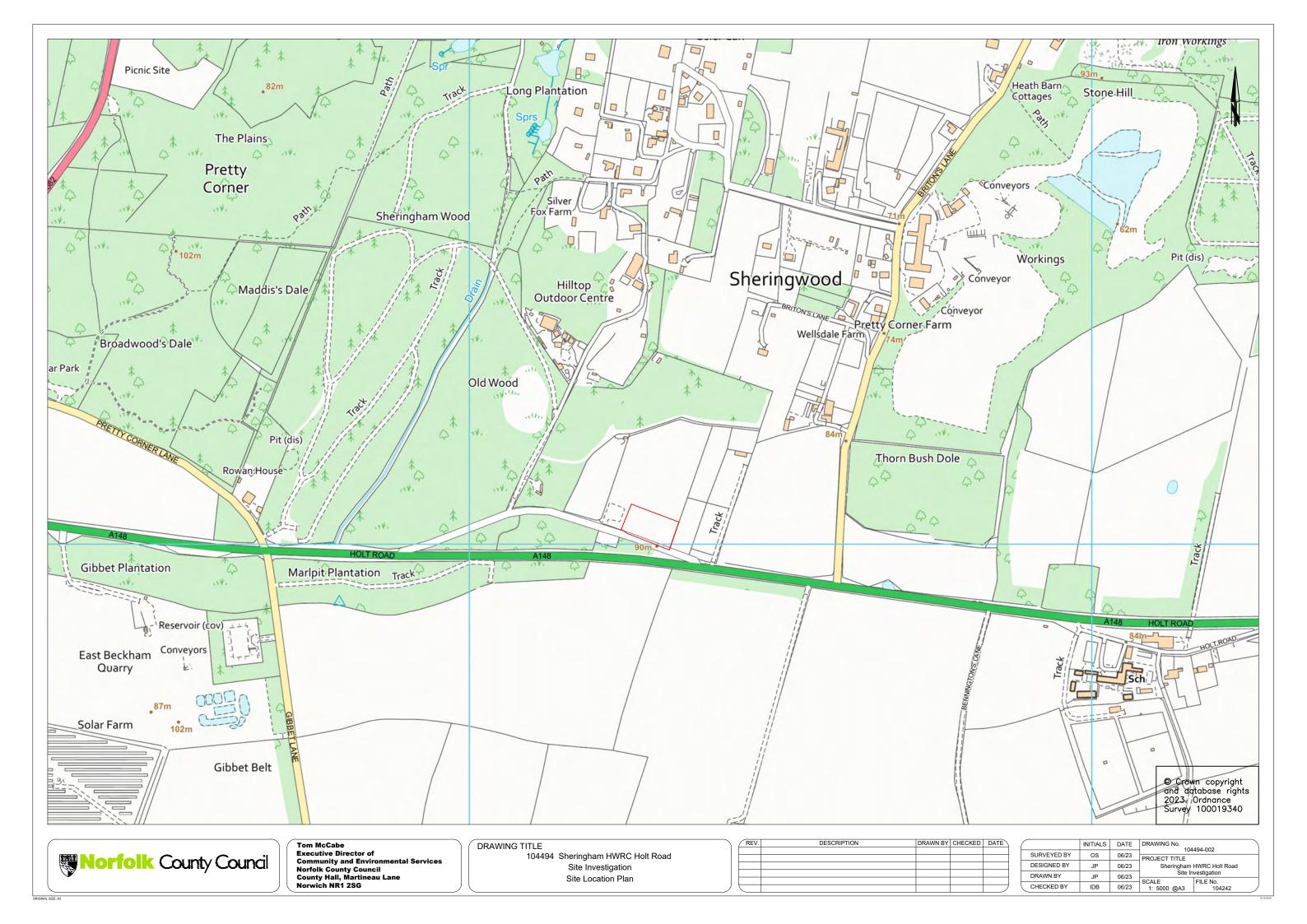
Trial Pit	Depth (bglm)	Run 1 m/sec	Run 2 m/sec	Run 3 m/sec	Mean m/sec
01	0.75	1.7 x 10 ⁻⁴	9.2 x 10 ⁻⁵	8.2 x 10 ⁻⁵	1.0 x 10 ⁻⁴
02	0.75	3.2 x 10 ⁻⁶	3.2 x 10 ⁻⁶	3.1 x 10 ⁻⁶	3.1 x 10 ⁻⁶
03	0.75	1.4 x 10 ⁻⁴	6.8 x 10 ⁻⁵	5.9 x 10 ⁻⁵	7.7 x 10 ⁻⁵
04	1.00	5.1 x 10 ⁻⁵	3.5 x 10 ⁻⁵	3.8 x 10 ⁻⁵	3.8 x 10 ⁻⁵

Norfolk Partnership Laboratory

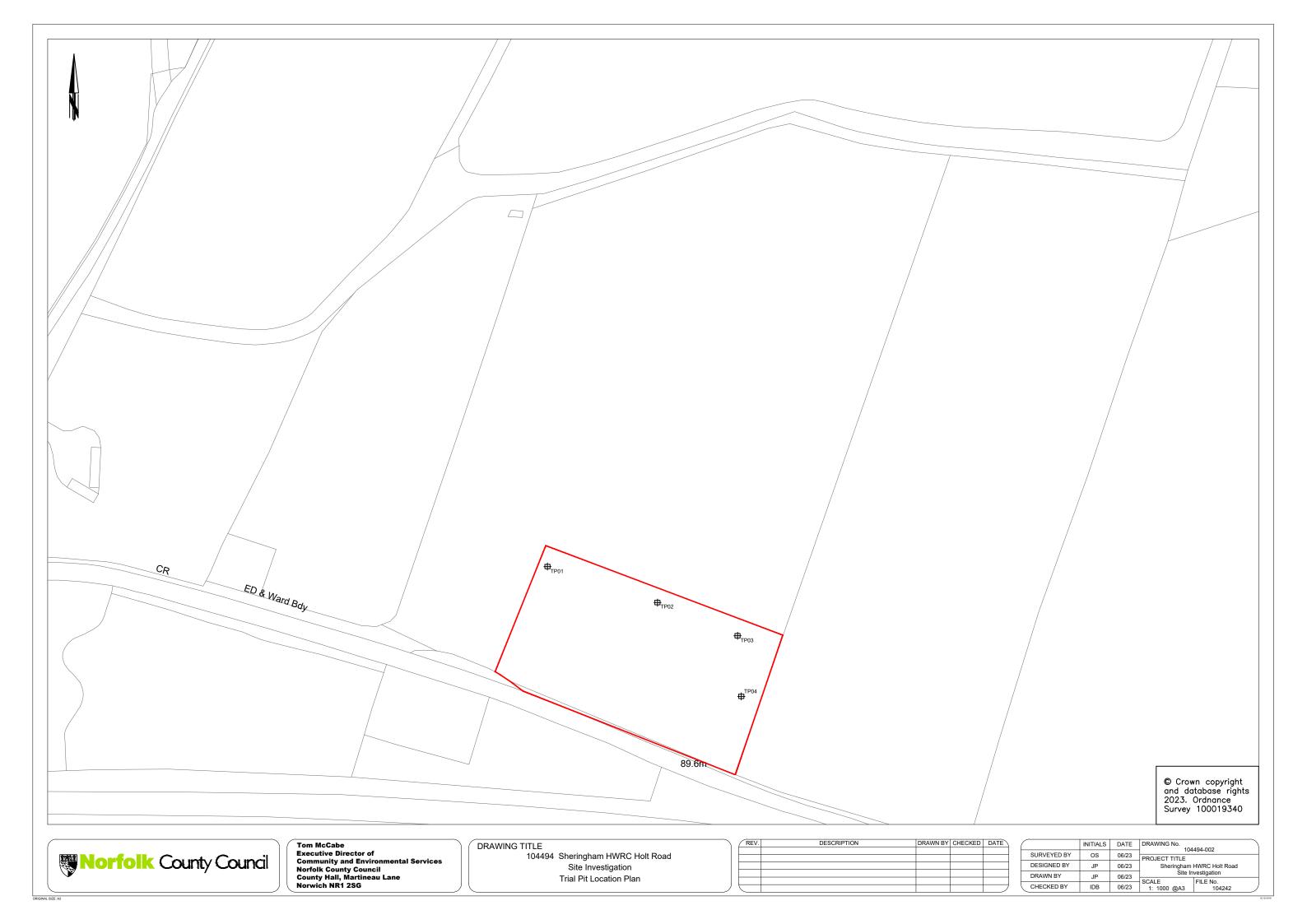
Site Investigation Section

This report was prepared under the direction of

Lead Engineer


I D Brown

Author of report Assistant Engineer


J Price

Date: 30/06/2023

Appendix A

Appendix **B**

Appendix C

TRIAL PIT LOG

												•			
Schen	ne		Sheringham New HWRC Supp Perm	Job	No.	10449	4	Trial Pit No. TP01							
Carrie	d out	for	Community and Environmental Services	Dat	Date Started 26/06/2023			Date Finished 26/06/2023							
Dimer	sions	5:	0.45m x 1.50m	Тур	e of Rig	JCB	3CX						Logge	d by	KN
Rema	rks:			De	oth (m)	0.75		Grou (m A0	nd Lev מכ	vel			Drawr	ı by	JP
				Co	ords	6162	261 - 3410		,				Checke	d by	IDB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Sam		Field				ory Test		
					(m)		Туре	No.	Tests	MC%	LL	PL	MPI	Org.	CBR
			Brown silty TOPSOIL. TOPSOIL Yellow, orangey brown and brown fine to medium SAND with some silt lenses. BRITONS LANE SAND AND GRAVEL		0.35										
						-									

TRIAL PIT LOG

										Shee	t 1 of	1				
Scher	ne		Sheringham New HWRC Supp Perm	Job	Job No. 104494				Trial Pit No. TP02							
Carrie	ed out	for	Community and Environmental Services	Da	Date Started 26/06/2023 Date Finished 26/06/2						6/202	2023				
Dimer	nsions	s:	0.45m x 1.50m	Тур	e of Rig	JCB	3CX						Logge	d by	KN	
Rema	Remarks:				oth (m)	0.75		Grou (m A	nd Lev OD)	/el			Drawr	ו by	JP	
				Co	ords	6162	297 - 3410	47		-		(Checke	∍d by	IDB	
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Sam Type	ple No.	Field Tests	MC%	LL	_aborat	ory Test		CBR	
			Brown fine sandy TOPSOIL. TOPSOIL Yellow, orangey brown and brown silty, clayey, fine SAND. BRITONS LANE SAND AND GRAVEL		0.40											

TRIAL PIT LOG

									Shee	t 1 of	1			
Scheme		Sheringham New HWRC Supp Perm	Job No. 104494 Trial Pit No. TP03											
Carried out for Community and Environmental Services		Date Started 26/06/2023 Date Finished 26/06/2						6/202	/2023					
			Туре	Type of Rig JCB 3CX						Logged by			KN	
Remarks	:		Dept	h (m)	0.75		Grou (m A	nd Lev OD)	/el			Draw	ו by	JP
		Co-o	rds	6163	322 - 4310	035				(Checke	∍d by	IDB	
Backfill Wat	iter Casi	g Description	Legend	Depth (m)	Scale	San		Field Tests	MC%			ory Test		CBR
		Brown sandy TOPSOIL. TOPSOIL Yellowish brown fine SAND with occasional gravel. Gravel is fine to medium, sub-angular to sub-rounded flint. BRITONS LANE SAND AND GRAVEL		(m) 0.20 0.75		Туре	No.		MC%		PL		Org.	CBR

TRIAL PIT LOG

Schen	ne		Sheringham New HWRC Supp Perm	Job	No.	10449	4	Trial I	Pit No		TP04	4				
Carrie	d out	for	Community and Environmental Services	Date	Date Started 26/06/2023			Date Finished 26/06/2023								
Dimer	sions	S:	0.45m x 1.50m	Туре	Type of Rig JCB 3CX								Logge	d by	KN	
Rema	rks:			Dep	th (m)	1.00		Groui (m A0	nd Lev מרכ	vel			Drawr	ו by	JP	
				Co-o	ords	6163	324 - 3410		50)			,	Checke	ed by	IDB	
Backfill	Water	Casing	Description	Legend	Depth	Scale	Samp		Field				tory Test			
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(m)		Туре	No.	Tests	MC%	LL	PL	MPI	Org.	CBR	
			Brown sandy TOPSOIL. TOPSOIL			-										
			Orangey brown fine to medium SAND. ₽RITONS LANE SAND AND GRAVEL		0.30	-										
			Some fine to fine to coarse, sub-angular to sub-rounded flint gravel between 0.4m to 0.5m.			-										
						-										
						-										
				<u></u>	1.00	-1.00										
						-										
						-										
						-										
						L										
						-										
						-2.00 -										
						-										
						-										
						F										
						-										
						-										
						-										
						-										
						_										
						-										
						- 4.00										
						F										
						-										
						F										
						-										
						-										

# Appendix D

Minutes 0.0

> 1.0 2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Scheme:	Sheringham HWRC
Project No	104494
Trial Pit No.	TP01
Depth of Trial Pit (m)=	0.75
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	

0.69

0.60

0.50

0.41

0.34

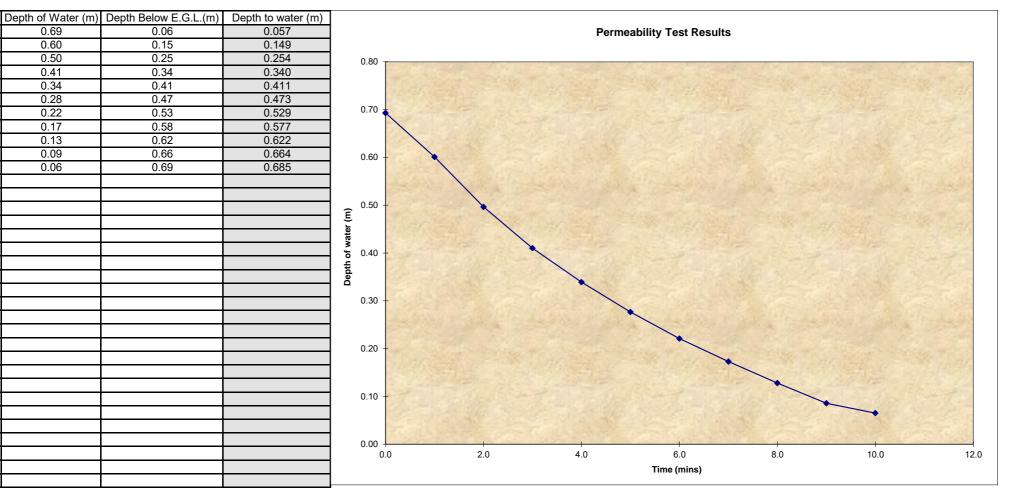
0.28

0.22

0.17

0.13

0.09


0.06

Run 1

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	0.5198	0.3465	0.1733
Time (mins)	2	4	7

Gravel fill	Yes
Voids %	45.2

Infiltration Rate	
1.7E-04 m/sec	



Minutes

0.0

1.0

2.0

3.0

4.0

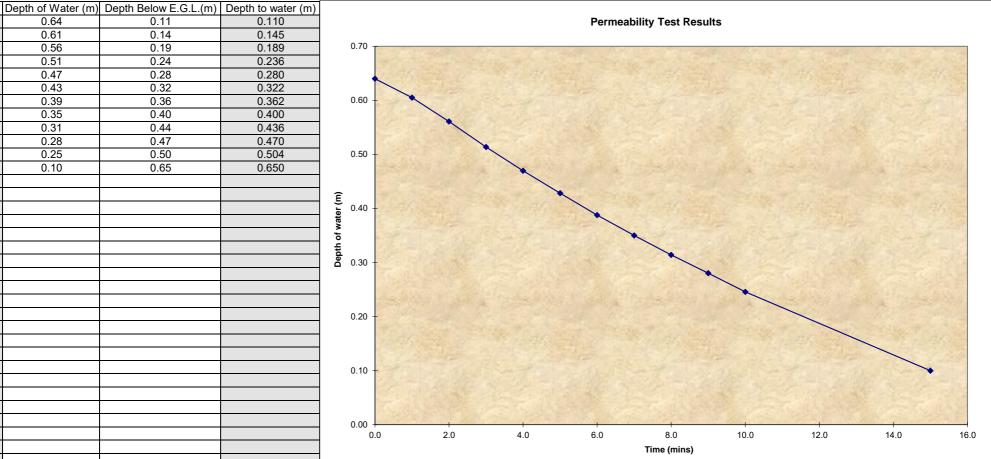
Scheme:	Sheringham HWRC
Project	104494
Trial Pit No.	TP01
Depth of Trial Pit (m)=	0.75
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000

0.64

0.61

0.56

0.51


0.47

# **Time of Emptying of Soakaway** (Values to be checked on chart)

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	0.4800	0.3200	0.1600
Time (mins)	4	8	13

Gravel fill	Yes
Voids %	45.2

Infiltration Rate	
Infiltration Rate 9.2E-05 m/sec	



#### 5.0 0.43 0.32 0.322 6.0 0.39 0.362 0.36 7.0 0.35 0.40 0.400 8.0 0.31 0.44 0.436 9.0 0.28 0.47 0.470 10.0 0.25 0.504 0.50 15.0 0.10 0.65 0.650

0.11

0.14

0.19

0.24

0.28

Minutes

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

15.0

20.0

25.0

30.0 40.0

Scheme:	Sheringham
Project	104494
Trial Pit No.	TP01
Depth of Trial Pit (m)=	0.75
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000

0.08

0.10

0.13

0.16

0.20

0.24

0.28

0.31

0.35

0.38

0.42

0.57

0.66

0.69

0.71

0.74

0.67

0.65

0.62

0.59

0.55

0.51

0.47

0.44

0.40

0.37

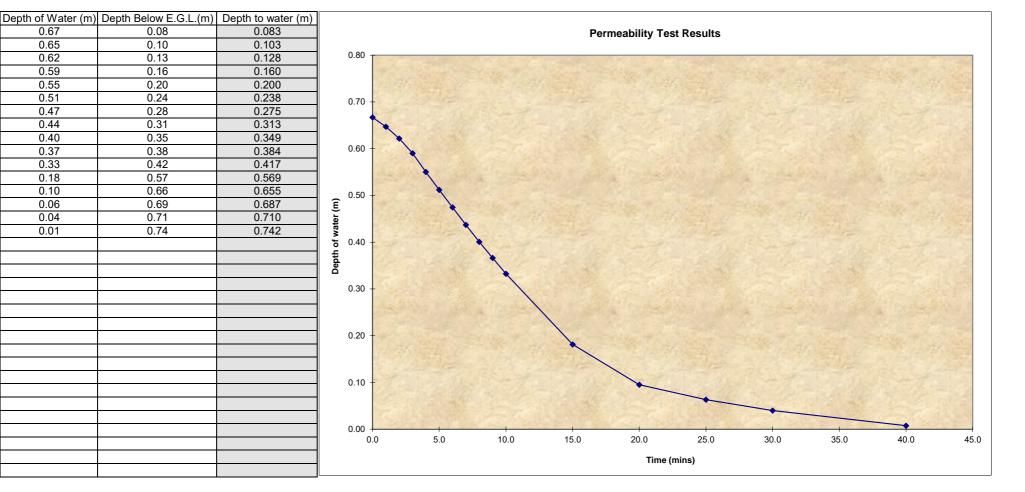
0.33

0.18

0.10

0.06

0.04


0.01

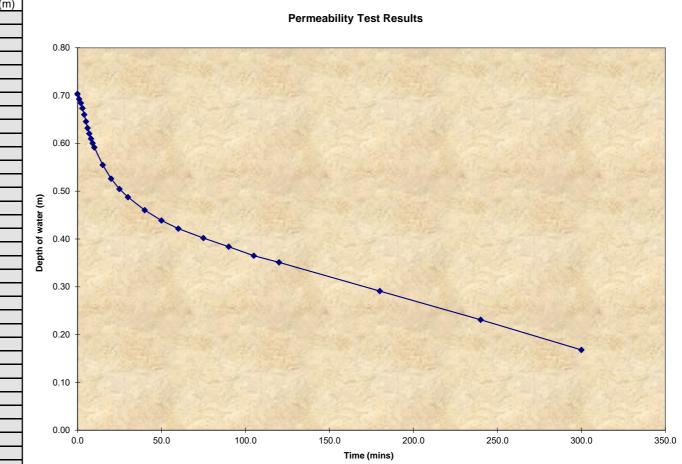
Run 3

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	0.5002	0.3335	0.1667
Time (mins)	5	10	16

Gravel fill	Yes
Voids %	45.2

Infiltration Rate	Mean
8.2E-05	1.0E-04 m/sec




Scheme:	Sheringham HWRC
Project No	104494
Trial Pit No.	TP02
Depth of Trial Pit (m)=	0.75
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	

Run 1

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	0.5276	0.3517	0.1759
Time (mins)	20	119	293

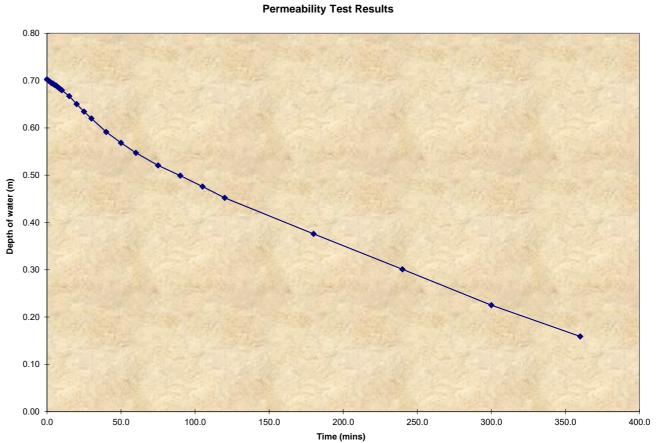
Gravel fill	Yes
Voids %	45.2

Infiltration Rate	
3.2E-06 m/sec	



Minutes	Depth of Water (m)	Depth Below E.G.L.(m)	Depth to water (m)
0.0	0.70	0.05	0.047
1.0	0.69	0.06	0.057
2.0	0.68	0.07	0.066
3.0	0.67	0.08	0.077
4.0	0.66	0.09	0.090
5.0	0.65	0.10	0.104
6.0	0.63	0.12	0.118
7.0	0.62	0.13	0.130
8.0	0.61	0.14	0.140
9.0	0.60	0.15	0.150
10.0	0.59	0.16	0.159
15.0	0.55	0.20	0.195
20.0	0.53	0.22	0.224
25.0	0.50	0.25	0.245
30.0	0.49	0.26	0.263
40.0	0.46	0.29	0.290
50.0	0.44	0.31	0.311
60.0	0.42	0.33	0.328
75.0	0.40	0.35	0.348
90.0	0.38	0.37	0.366
105.0	0.37	0.39	0.385
120.0	0.35	0.40	0.399
180.0	0.29	0.46	0.459
240.0	0.23	0.52	0.519
300.0	0.17	0.58	0.582

Scheme:	Sheringham HWRC
Project	104494
Trial Pit No.	TP02
Depth of Trial Pit (m)=	0.75
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000


0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06	0.047 0.050 0.052 0.055 0.056 0.060 0.063 0.063 0.065 0.068 0.070 0.083 0.100 0.116 0.130 0.159 0.182 0.203	Depth of water (m)
0.05           0.06           0.06           0.06           0.06           0.06           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.10           0.12           0.13           0.16           0.18           0.20	0.052           0.055           0.056           0.059           0.060           0.063           0.065           0.068           0.070           0.083           0.100           0.116           0.130           0.159           0.182	f water (m)
0.06           0.06           0.06           0.06           0.06           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.10           0.12           0.13           0.16           0.18           0.20	0.055           0.056           0.059           0.060           0.063           0.065           0.068           0.070           0.083           0.100           0.116           0.130           0.159           0.182	if water (m)
0.06           0.06           0.06           0.06           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.10           0.12           0.13           0.16           0.18           0.20	0.056           0.059           0.060           0.063           0.065           0.068           0.070           0.083           0.100           0.116           0.130           0.159           0.182	rf water (m)
0.06 0.06 0.07 0.07 0.07 0.07 0.08 0.10 0.12 0.13 0.16 0.18 0.20	0.059           0.060           0.063           0.065           0.068           0.070           0.083           0.100           0.116           0.130           0.159           0.182	rf water (m)
0.06 0.06 0.07 0.07 0.07 0.08 0.10 0.12 0.13 0.16 0.18 0.20	0.060 0.063 0.065 0.068 0.070 0.083 0.100 0.116 0.130 0.159 0.182	rf water (m)
0.06 0.07 0.07 0.07 0.08 0.10 0.12 0.13 0.16 0.18 0.20	0.063 0.065 0.068 0.070 0.083 0.100 0.116 0.130 0.159 0.182	f water (m)
0.07 0.07 0.07 0.08 0.10 0.12 0.13 0.16 0.18 0.20	0.065 0.068 0.070 0.083 0.100 0.116 0.130 0.159 0.182	f water (m)
0.07 0.07 0.08 0.10 0.12 0.13 0.16 0.18 0.20	0.068 0.070 0.083 0.100 0.116 0.130 0.159 0.182	rf water (m)
0.07 0.08 0.10 0.12 0.13 0.16 0.18 0.20	0.070 0.083 0.100 0.116 0.130 0.159 0.182	of water (m)
0.08 0.10 0.12 0.13 0.16 0.18 0.20	0.083 0.100 0.116 0.130 0.159 0.182	f water (m)
0.10 0.12 0.13 0.16 0.18 0.20	0.100 0.116 0.130 0.159 0.182	f water (m)
0.12 0.13 0.16 0.18 0.20	0.116 0.130 0.159 0.182	f water (m)
0.13 0.16 0.18 0.20	0.130 0.159 0.182	f water (m)
0.16 0.18 0.20	0.159 0.182	f water (I
0.18 0.20	0.182	f wate
0.20		ç
	0.203	0
0.00		Ę
0.23	0.229	Dec
0.25	0.251	_
0.27	0.274	
0.30	0.298	
0.37	0.374	
0.45	0.449	
0.53	0.525	
0.59	0.591	
	0.53	0.53 0.525

Run 2

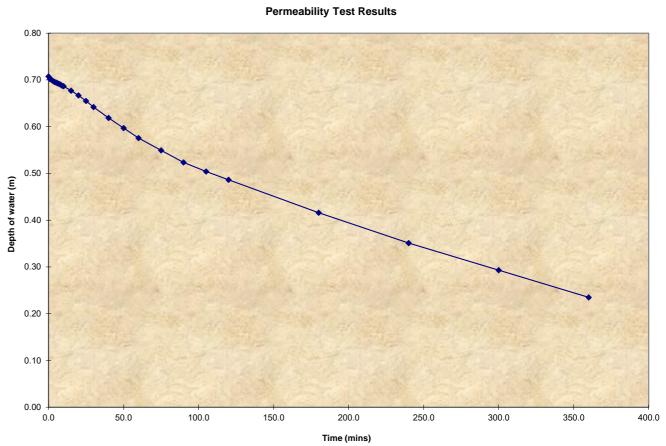
% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	0.5270	0.3513	0.1757
Time (mins)	72	200	345

Gravel fill	Yes
Voids %	45.2

Infiltration Data
Infiltration Rate
3.2E-06 m/sec



Scheme:	Sheringham
Project	104494
Trial Pit No.	TP02
Depth of Trial Pit (m)=	0.75
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000


Minutes		Depth Below E.G.L.(m)	Depth to water (m)
0.0	0.71	0.04	0.043
1.0	0.70	0.05	0.048
2.0	0.70	0.05	0.050
3.0	0.70	0.05	0.053
4.0	0.70	0.05	0.054
5.0	0.69	0.06	0.056
6.0	0.69	0.06	0.057
7.0	0.69	0.06	0.058
8.0	0.69	0.06	0.060
9.0	0.69	0.06	0.062
10.0	0.69	0.06	0.063
15.0	0.68	0.07	0.073
20.0	0.67	0.08	0.083
25.0	0.66	0.09	0.095
30.0	0.64	0.11	0.108
40.0	0.62	0.13	0.131
50.0	0.60	0.15	0.153
60.0	0.58	0.17	0.174
75.0	0.55	0.20	0.201
90.0	0.52	0.23	0.227
105.0	0.50	0.25	0.246
120.0	0.49	0.26	0.264
180.0	0.42	0.33	0.334
240.0	0.35	0.40	0.399
300.0	0.29	0.46	0.457
360.0	0.24	0.52	0.515

Run 3

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	0.5306	0.3538	0.1769
Time (mins)	86	232	382

Gravel fill	Yes
Voids %	45.2

Infiltration Rate	Mean
3.0E-06	3.1E-06 m/sec



Minutes

0.0

1.0 2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

15.0

20.0

Scheme:	Sheringham HWRC	
Project No	104494	
Trial Pit No.	TP03	
Depth of Trial Pit (m)=	0.75	
Length of Trial Pit (m)=	1.50	
Breadth of Trial Pit (m)=	0.45	
No of runs	3	
Pipe upstand (m)		

-0.12

0.00

0.13

0.23

0.31

0.37

0.42

0.47

0.51

0.55

0.59

0.66

0.66

0.87

0.75

0.62

0.52

0.44

0.38

0.33

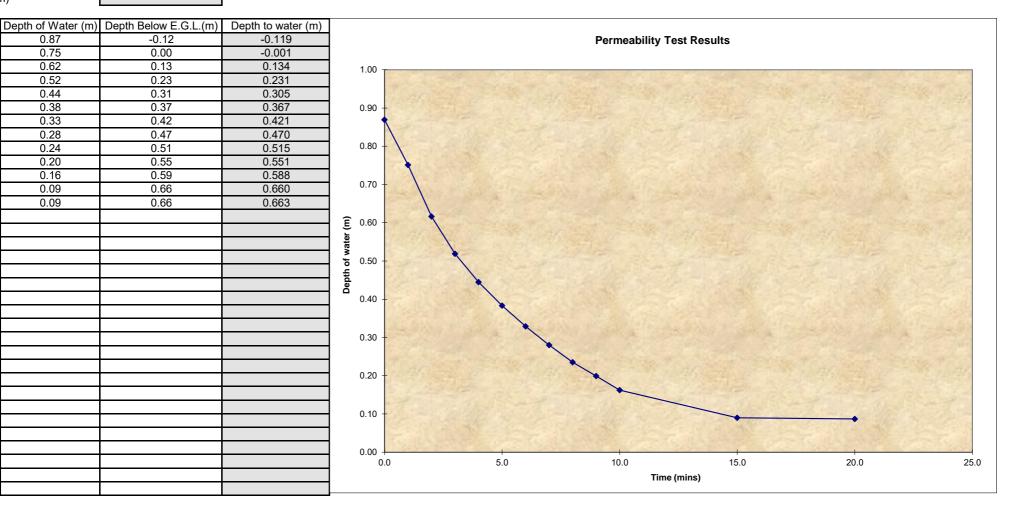
0.28

0.24

0.20

0.16

0.09


0.09

Run 1

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	0.6521	0.4347	0.2174
Time (mins)	2	4	8

Gravel fill	Yes
Voids %	45.2

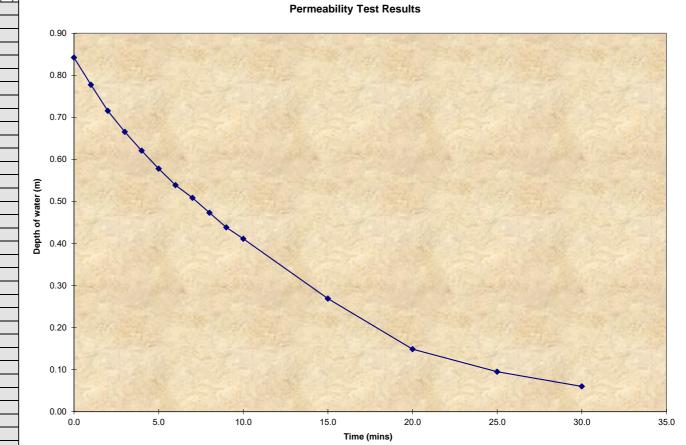
Infiltration Rate	
1.4E-04 m/sec	

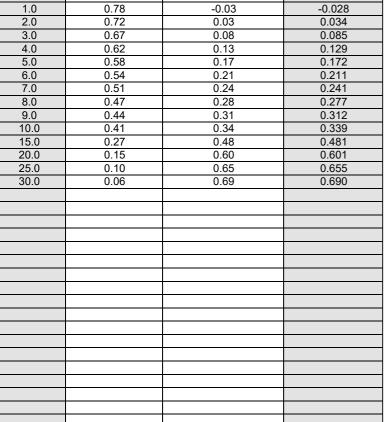


Minutes

0.0

Scheme:	Sheringham HWRC
Project	104494
Trial Pit No.	TP03
Depth of Trial Pit (m)=	0.75
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000


0.84


# **Time of Emptying of Soakaway** (Values to be checked on chart)

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	0.6317	0.4212	0.2106
Time (mins)	4	10	17

Gravel fill	Yes
Voids %	45.2

Infiltration Rate	
6.8E-05 m/sec	





Depth of Water (m) Depth Below E.G.L.(m) Depth to water (m)

-0.09

-0.092

Minutes

0.0

1.0

2.0

3.0

4.0

5.0

6.0 7.0

8.0

9.0

10.0

15.0

20.0

25.0

30.0

Scheme:	Sheringham
Project	104494
Trial Pit No.	TP03
Depth of Trial Pit (m)=	0.75
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000

-0.08

-0.02

0.04

0.08

0.13

0.16

0.20

0.23

0.26

0.29

0.31

0.44

0.55

0.62

0.65

0.83

0.77

0.71

0.67

0.62

0.59

0.55

0.52

0.49

0.46

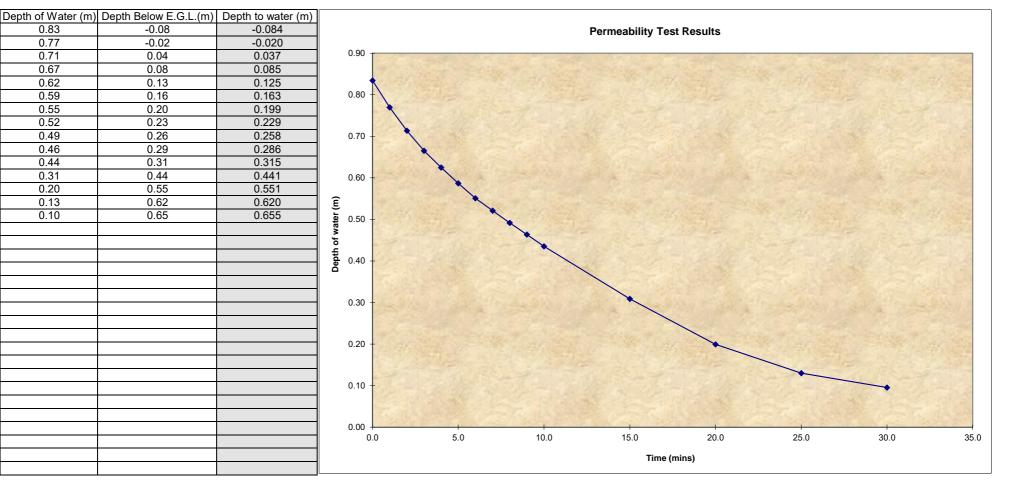
0.44

0.31

0.20

0.13

0.10


Run 3

#### Time of Emptying of Soakaway (Values to be checked on chart)

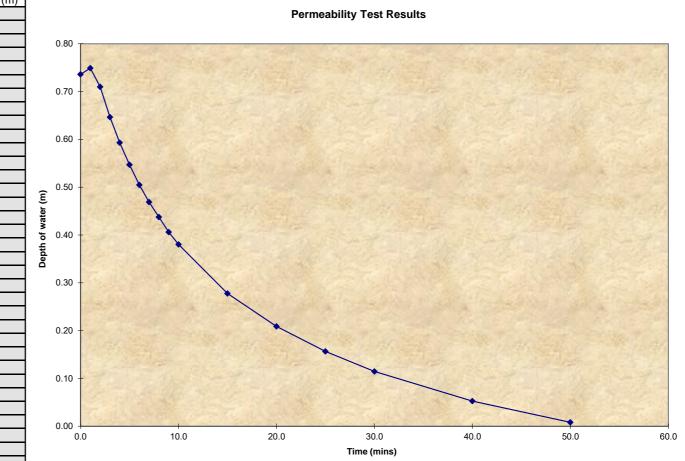
% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	0.6257	0.4172	0.2086
Time (mins)	4	11	20

Gravel fill	Yes
Voids %	45.2

Infiltration Rate	Mean
5.9E-05	7.7E-05 m/sec



Page 3


Scheme:	Sheringham HWRC	
Project No	104494	
Trial Pit No.	TP04	
Depth of Trial Pit (m)=	1.00	
Length of Trial Pit (m)=	1.50	
Breadth of Trial Pit (m)=	0.45	
No of runs	3	
Pipe upstand (m)		

Run 1

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	0.5519	0.3680	0.1840
Time (mins)	5	11	22

Gravel fill	Yes
Voids %	45.2

Infiltration Rate	
5.1E-05 m/sec	



Minutes		Depth Below E.G.L.(m)	Depth to water (m)
0.0	0.74	0.26	0.264
1.0	0.75	0.25	0.251
2.0	0.71	0.29	0.290
3.0	0.65	0.35	0.354
4.0	0.59	0.41	0.407
5.0	0.55	0.45	0.453
6.0	0.50	0.50	0.495
7.0	0.47	0.53	0.531
8.0	0.44	0.56	0.563
9.0	0.41	0.59	0.594
10.0	0.38	0.62	0.620
15.0	0.28	0.72	0.722
20.0	0.21	0.79	0.791
25.0	0.16	0.84	0.844
30.0	0.11	0.89	0.886
40.0	0.05	0.95	0.948
50.0	0.01	0.99	0.992

Minutes

0.0

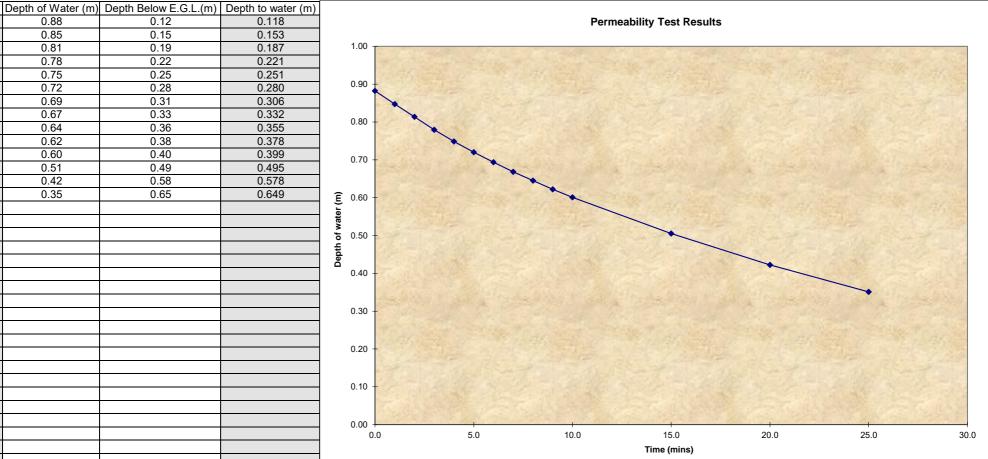
1.0

2.0

Scheme:	Sheringham HWRC
Project	104494
Trial Pit No.	TP04
Depth of Trial Pit (m)=	1.00
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000

0.88

0.85


0.81

#### Time of Emptying of Soakaway (Values to be checked on chart)

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	0.6617	0.4411	0.2206
Time (mins)	7	19	34

Gravel fill	Yes
Voids %	45.2

Infiltration Rate	
Infiltration Rate 3.5E-05 m/sec	



#### 3.0 0.78 0.22 0.221 4.0 0.75 0.25 0.251 5.0 0.72 0.28 0.280 6.0 0.69 0.306 0.31 7.0 0.67 0.33 0.332 8.0 0.64 0.355 0.36 9.0 0.62 0.38 0.378 10.0 0.399 0.60 0.40 15.0 0.51 0.49 0.495 20.0 0.42 0.58 0.578 25.0 0.65 0.649 0.35

0.12

0.15

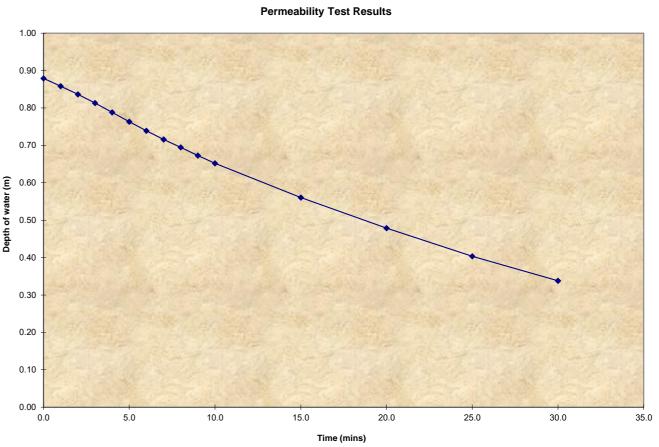
0.19

0.118

0.153

0.187

Scheme:	Sheringham 104494
Project Trial Pit No.	TP04
Depth of Trial Pit (m)=	1.00
Length of Trial Pit (m)=	1.50
Breadth of Trial Pit (m)=	0.45
No of runs	3
Pipe upstand (m)	0.000


Pipe upstand (	m)	0.000		
Minutes	Depth of Water (m)	Depth Below E.G.L.(m)	Depth to water (m)	
0.0	0.88	0.12	0.121	
1.0	0.86	0.14	0.142	
2.0	0.84	0.16	0.163	
3.0	0.81	0.19	0.187	
4.0	0.79	0.21	0.212	
5.0	0.76	0.24	0.237	
6.0	0.74	0.26	0.261	
7.0	0.72	0.28	0.284	
8.0	0.69	0.31	0.305	
9.0	0.67	0.33	0.327	
10.0	0.65	0.35	0.348	
15.0	0.56	0.44	0.439	
20.0	0.48	0.52	0.521	
25.0	0.40	0.60	0.597	Ξ
30.0	0.34	0.66	0.662	Depth of water (m)
				ма
				of
				pt
				ڡ

### Run 3

% Full	25% Empty	50% Empty	75% Empty
Depth of Water (m)	0.6594	0.4396	0.2198
Time (mins)	10	23	39

Gravel fill	Yes
Voids %	45.2

Infiltration Rate	Mean
3.2E-05	3.8E-05 m/sec





# Appendix I Proprietary Product Information

# ACO. creating

# the future of drainage

# ACO V-Septor – Hydrodynamic Separator

The ACO V-Septor is an advanced

hydrodynamic separator that removes sediment bound contaminants. Its design enables removal of pollutants by means of settlement and the capture of floatables.

The ACO V-Septor is available in a range of sizes to accommodate small to large sites and can be custom made for demanding installations.

The ACO V-Septor retains solid pollution and oil. It also forms part of the SuDS management train as it removes over 50% of fine Total Suspended Solids as well as sediment bound metals and hydrocarbons.

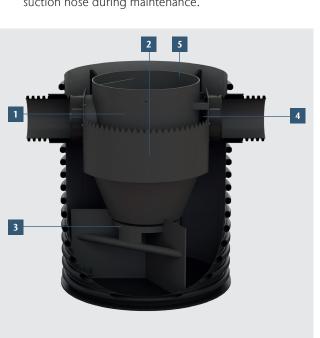
# Benefits

- Removes solid pollution from plastic rubbish to fine silt
- Forms part of the SuDS management train
- Delivered fitted in a HDPE chamber with lifting eyes, and straps supplied for ease of installation
- Easily accessible for maintenance

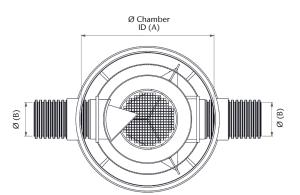


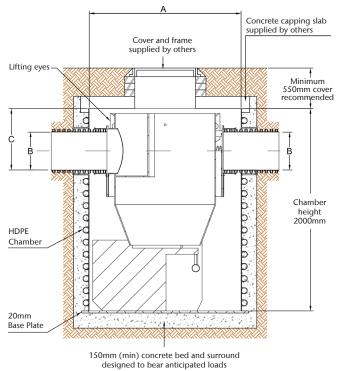
Hydro	carbons	Total suspended solids	Metals		
0.5		0.5	0.4		
Liquid hydrocarbons	Sediment bound hydrocarbons				
0.8	0.5				

Details available on request







Product name	Product code	Chamber diameter (A)	Pipe connections (B)	Top to invert (C)	Sediment storage capacity	Oil / debris storage capacity	Typical treatment flow rate (fine)	Typical treatment flow rate (coarse)	Typical non remobilisation flow rate (coarse)
		mm	mm	mm	m ³	I	l/s	l/s	l/s
ACO V-Septor -	Hydrodynami	c Separator	Range						
V-Septor 750	40995	750	150	375	0.4	49	11	14	37
V-Septor 1000	41000	1050	225	483	0.6	335	20	25	67
V-Septor 1200	41003	1200	300	550	0.86	397	29	37	98
V-Septor 1500	41005	1500	375	608	1.2	785	45	57	151
V-Septor 2000	41009	2100	500	700	2.2	1130	80	102	269
V-Septor 2500	41013	2400	600	850	3.5	2010	125	159	421


# How it works

- 1 The deflection plate directs the incoming stormwater to create a vertical vortex.
- 2 Suspended solids settle down in the sludge chamber. Light liquids and debris are captured at the surface.
- **3** Radial flow baffles create isolated zones to retain sediments in the sludge chamber and prevent remobilisation of sediments during peak flow events.
- 4 Cleaned water flows up the outer chamber and over the balancing weir and then passes through the outlet to discharge to the water environment.
- **S** Captured solids and debris can easily be removed by suction hose during maintenance.



ACO Water Management Contacts: Sales: uk-swc@aco.co.uk Technical: technical@aco.co.uk Tel: 01462 816666 www.aco.co.uk





ACO. creating the future of drainage

