DESIGN, ACCESS & SUSTAINABILITY STATEMENT

HETHEL ENGINEERING CENTRE
NEW ADVANCED ENGINEERING FACILITY
CD10588 - P1
CONTENTS

1.0 DESIGN STATEMENT
 1.1 Background
 1.2 Planning Policy
 1.4 Use
 1.5 Amount
 1.7 Scale
 1.8 Landscaping
 1.9 Appearance
 1.10 Sustainability

2.0 ACCESS STATEMENT
 2.1 Vehicular and transport links
 2.2 Inclusive access
 2.3 Constructor’s access and working areas

3.0 CONSULTATIONS

4.0 CONCLUSION
1.0 DESIGN STATEMENT

1.1 Background

This document is provided in support of the full Planning Application submitted to Norfolk County Council in February 2012 for an extension to the existing Engineering Centre to create an Advanced Engineering facility. (The original application submitted in October 2011 has been withdrawn and replaced with this amended resubmission following a reassessment of business and accommodation needs required of the proposal). The new two storey building now proposed will provide sixteen new ‘grow on’ business incubator units, containing both workshop and office accommodation, linked to the existing main building. It is anticipated that the project will commence on site during 2012.

Hethel Engineering Centre (HEC) opened in 2006 and has been widely celebrated as a highly successful, exemplar enterprise hub supporting the engineering sector. HEC supports a substantial cluster of businesses across Norfolk, Suffolk and beyond, many of which are at the forefront of technology in their respective fields - particularly automotive, advanced engineering and manufacturing and the developing area of clean technology. (Refer to accompanying document noting HEC’s business achievements).

The Centre has been successful, virtually from day one, and reached capacity in 2008. New businesses were being turned away, so the Centre was extended in 2009/10 to meet increasing demand and also to provide sufficient additional income to allow the Centre to be fully financially independent, as start up grant funding was shortly to run out. The building was designed in a manner that could easily facilitate expansion, as growth of the Centre was always envisaged if the facility met or exceeded expectations. An increase in lettable space at the Hethel Engineering Centre provided that additional space to cater for the growing demand for tenancies at what is regarded as being a flagship enterprise hub.

Many of the tenants want to continue to be part of the networking and collaborative environment facilitated by the existing Centre even though they may have outgrown their present space. There are also many tenants who have won substantial business where the image and environment created by the Centre has played a key role. Tenants understand that and wish to sustain this when they relocate. Many who have relocated have not stayed local - and the Centre is also aware of new businesses that have started up outside the county due to the lack of space at Hethel.

This proposed extension to HEC to form the Advanced Manufacturing Centre is urgently required. The existing Centre is full and has tenants, some occupying several units between them, which must commit to expansion plans soon. They are very keen to stay in the immediate vicinity but practicalities will dictate they move away if the AMC is not certain to be built shortly. These ‘grow on’ facilities will also, of course, free up space for more start-up tenancies known to be waiting in the wings.
Site location plan
1.2 Planning Policy

Refer also to separate Supporting Planning Statement

The development plan for the area is provided at two levels
• At the regional level by the East of England Plan; and
• At a local level by Joint Core Strategy (JCS) and by ‘saved’ policies from the South Norfolk Local Plan (SNLP).

Central Government advice is also relevant, notably
• PPS1 – Delivering sustainable development
• PPS4 – Planning for sustainable economic growth (December 2009)
• PPG13 – Transport

Relevant East of England Plan policy includes
• E4 – Clusters

Relevant JCS policies include
• Policy 1 – Addressing climate change and protecting environmental assets
• Policy 2 – Promoting good design
• Policy 3 – Energy and water
• Policy 5 – The economy
• Policy 9 – Strategy for growth in the Norwich Policy Area

Relevant saved SNLP policy includes
• Policy ENV8 – Development in open countryside
• Policy EMP4 – Employment development outside development limits and village boundaries of identified towns and villages
• Policy EMP 6 – Alterations and extensions to existing business premises
• Policy IMP2 – Landscaping
• Policy IMP6 – Visual impact of parked cars
• Policy IMP8 – Safe and free flow of traffic
• Policy IMP 10 – Noise
• Policy TRA19 – Parking standards

The current Local Plan proposal map remains of some relevance and shows the site with a countryside location; however it does not identify the site with any conservation or other environmental protection designation.

PPS 4 advice seeks to promote sustainable economic development. However it clearly and specifically recognizes that development plans should ‘positively plan for the location, promotion and expansion of clusters or networks of knowledge driven or high technology industries. The regional level should set criteria for, or identify the general locations of strategic sites, ensuring that major greenfield sites are not released unnecessarily through competition between local authority areas – (policy EC2).

These planning policy aspects are more fully explored in the supporting planning statement.
1.3 Process

Context

The current four acre Engineering Centre site was established in 2004/5 on arable land purchased from Lotus Cars by Norfolk County Council, directly south of the Lotus test track and fronting onto the B1135 Wymondham Road. At the time of the original building programme a length of new access road was constructed off the B1135, replacing the old rough track.

The site frontage on the B1135 remains much as it was prior to development, with an existing hedge and ditch running parallel with the highway. Behind this, within the site, a large water filled swale (formed as part of the original project) doubles as a surface water attenuation tank whilst providing a very attractive natural site feature and wildlife habitat.

The existing Engineering Centre building is a crisp, modern ‘L’ shaped form, finished in metallic silver cladding panels, glass and natural cedar louvres. The main entrance wing is approached over a sculptural curved steel walkway bridging an attractively landscaped formal pool. A large car park in front of the building has been carefully integrated with a mix of macadam and gravel surfacing and maturing trees. To the rear of the longer incubator wing of the building is a large service yard which is also used for parking by tenants. The Centre was sympathetically extended in 2010 to the west entrance side of the existing site to provide additional incubator units to meet the increasing demand for new accommodation.

The development as a whole has settled well into its rural context and sits very comfortably within the countryside landscape. The gently sweeping two lanes of the Wymondham Road provide long open views of the building from both approaches as the route links through the various farms and settlements of Wreningham to the east and Bracon Ash to the west.

The Centre has, as already documented, become a well known regional destination with a much respected reputation for both the calibre of its undertakings and for the appeal of its venue. During 2011 Norfolk County Council purchased (from Lotus) a further 2 acres of land immediately to the east of the existing site to facilitate this proposed expansion of the Centre.
Photographs of the existing site

View East along the Wymondham Road

View West along the Wymondham Road
View of main entrance across bridge and pool

View of existing north elevation service yard
Location for new Advanced Engineering extension view West

Location for new Advanced Engineering extension view East
Appraisal

Hethel Engineering Centre has successfully filled all the available incubators and has developed a brand synonymous with innovation and engineering excellence. It continues to focus on innovation, enterprise and skills and needs to grow to meet business demand.

It has become evident that whilst the size of the existing incubator units has proved to be ideal for the initial start up businesses, there is a demand for accommodation which will enable some of these companies to develop their products and services from design / development and prototyping into manufacture.

The next key component of HEC’s growth is seen to be the construction of an Advanced Engineering facility which would house 12-16 growing businesses.

Internal view of existing incubators – tenants need larger ‘grow on space’
Site analysis – views

The principal public medium and long range sweeping views of the site are east and west from the main B1135 highway. The main view from the west in particular builds in content and interest as the site is entered and the building entrance is approached. The views from the north of the site are of considerably less importance. In fact, the mounded earth bunding around the Lotus test track is specifically intended to eliminate any view (either in or out).

Illustration of main views

Site analysis - routes

The site has two vehicular entrances, both of which are off the existing unadopted access road, installed when the project was built in 2005. The first site entrance is to the main car park, with barrier control, and is the sole entrance for new visitors in cars to the Centre. The second entrance, at the end of the access spur road, is for large vehicle deliveries and tenants access to the vast service yard at the rear of the incubator units.

Illustration of main routes
Options

A number of key considerations have contributed to shaping the proposed design of the extension, providing both design constraints and design opportunities:

a) The new grow-on ‘incubators’ require similar servicing facilities to those enjoyed by the existing tenants. They need a service yard adjacent to their workshop entrance, convenient tenant and visitor parking, shared serviced toilets and a covered link to the main building providing access to the Centre’s main reception, canteen and conference facilities.

b) The new ‘incubators’ need to be considerably larger than the present (70sqm) workshops. They also need to separate the workshop area (with clear 5 metre headroom) from office / studio space. Each unit will provide a total of 200-250sqm internal floor area, split equally between ground floor workshop space and first floor offices.

c) The two acres of flat arable land acquired to the east of the existing Centre’s site is ideally located for a legible and linear extension of the existing facilities, keeping them close to the main entrance hub. The existing main reception / conference wing projects south of the tenant accommodation and has a strong elevation and character, with a dramatic overhanging roof. The challenge for the extension is how to add a significantly and necessarily large and bulky building without unsettling or overwhelming the scale of the existing elevations, as seen from the east and west aspects in particular.

d) The existing building has very simple, crisp, clean, modern lines and materials. It uses that form as part of its image promotion as a regional centre / hub of engineering excellence. It is vital that the new extension should not detract from that image, but rather that it should reinforce / enhance the visual appeal and experience.

Illustration from a publicity brochure
1.4 Use

Norfolk County Council has identified the important need to develop and expand the facilities at the Engineering Centre to meet demand. A simple and clear brief has emerged from that.

The Centre requires sixteen new grow-on incubators, each with a total floor area of around 200-250m². Each unit requires a ground floor workshop space of around 100m² with direct access to a tenant only service yard and a further 100m² of office studio space above, with direct and secure access to the workshop and to the main central facilities of the Centre. The workshops require a clear headroom of 5 metres for operational needs and allow for flexibility of internal layout arrangement and partitioning.

The new incubator units require the same provision for large vehicle deliveries and external access as the existing incubator tenants and appropriate car parking space.

The Centre also wishes the project to address the future energy needs of both the new building and the existing building in a sustainable manner. The original building currently relies on an oil fired heating system (due to its location remote from a practical mains gas supply) and this is not regarded as a sustainable or economic situation to continue for the future.

The new building should aim to achieve a BREEAM rating of ‘Excellent’, the gold standard for best practice in sustainable building design.

Proposed site plan identifying roof plan of proposed extension
1.5 Amount

The proposal is for a two storey linked extension building to the east end of the existing building providing a total internal floor new build area of approximately 3750m². This new Advanced Manufacturing wing will provide the briefed accommodation, as follows:

Building:
a) Sixteen new grow-on incubator units, each with an internal area of c200m².
b) Each unit with ground floor workshop of c100m², first floor office of c100m².
c) New shared toilet accommodation and a link corridor to the existing Centre.
d) A new bio-mass boiler for the new workshops and existing building heating.
e) Air source heat pumps providing heating / cooling to the new offices.

Outdoor:
a) Extended service yard and additional parking.
b) Landscape works around the new facility and a new surface water swale.
c) Diversion of the existing overhead power line around the site perimeter.

Proposed site plan indicating area of extensions
1.6 Layout

The new Advanced Manufacturing facility is proposed as a two storey building which will occupy the two acre portion of land to the east of the existing Engineering Centre site, bordering onto the Potash Lane / Wymondham Road junction.

The additional land was acquired by Norfolk County Council in 2011. Vehicle access to the site remains in its existing configuration, with new vehicular and pedestrian links within the site to connect the additional service yard area and the new parking spaces. A new dedicated cycle pathway into the site is proposed.

Ground and First Floor Plans
View from the west approach along the Wymondham road

The main clear views of the new building are from the Wymondham Road, approaching from the west and from the east. These images demonstrate how the facility will respect and complement the style and materials of the existing Centre, without visually dominating it or detracting from the strong image and presence of the main entrance wing.

View from the east approach along the Wymondham road

The extension continues the linearity of the original plan and follows the front building line set by the existing main tenant accommodation. The new facility compliments the powerful imagery of the much photographed entrance pond and bridge and allows the new and existing parking and landscaping to flow and merge together seamlessly along the site frontage.

The extension behind the existing building from main car park
Lighting

The design seeks to balance the amount of lighting required for safe passage to the building and personal security, with consideration for both the residents of neighbouring properties (some distance away) and the limiting of unnecessary night sky pollution.

The proposals are as follows:

a) External lighting to the new car parking and service yard areas will follow the style and level of lighting currently provided to the existing parking and service areas.

b) The general car park / cycle path lighting will have luminaires mounted on 4 metre columns to match the existing installation and controlled from a solar dial time clock. Lighting will be on from dusk to mid evening. The service yard illumination will be by building mounted flood light luminaires matching those on the existing buildings and controlled by an external IP rated switch which is comparable with the existing external lighting control.

c) Building illumination will be exclusively downward lighting installed within the large overhanging roof soffits matching the existing. Lighting to the shutter doorways of the new incubators will be of a bulkhead type similar to that on the existing units (facing into the service yard). The soffit lighting (which will operate from dusk to dawn for the security of the building) will be at a lower level of illumination than that existing at present for the main car park and pedestrian entrances.

d) There will be no new external feature lighting other than the soffit lighting described above. A new circular HEC signs will be provided on the new extension (as illustrated) – this provides very low level LED backlighting to the signage wording.

Illustration of night time illumination of south elevation
Security

The site has not experienced any significant breaches of security since opening. The new facility will be provided with the same good security protection in terms of lighting and alarm systems and a high quality of door/window and lock product. The original design intention stressed the importance of maintaining an ‘open’ impression appropriate to its rural setting, and this informal style adopted along the southern frontage has been successful.

The existing PIR security alarm will be extended to cover the entire building. This provides both individual cover for the incubator units and a comprehensive cover of all office and common areas. It is coupled with an access control system for tenants - which will also be extended to the new facility. The existing CCTV security camera coverage will be extended to cover the perimeter (and interior) areas of the extended building.

The existing 2.4 metre high galvanized security palisade fencing around the existing north facing incubator service yard area will be maintained and extended (in the same style and finish) to encompass the new north facing incubators. No new fencing will be provided on the main car park side of the building.

1.7 Scale

The original building design demonstrated great concern for the impact of the development on the long-range approach views in terms of scale and massing. Whilst the appearance (as appropriate to its function) needed to be modern and striking, it did not wish to be overwhelming in its rural setting.

The scale of the Advanced Engineering facility is of a large block as a necessity – the workshops requiring a five metre clear internal height with the office space located on the floor above. It has been possible, however, to reduce the impression of overwhelming scale using a number of design strategies. Firstly, a new bold projecting ‘brise soleil’ sun shade structure runs full length of the south elevation at a lower level, supported on a colonnade of angled columns – this will provide the principal public view of the new façade. It reinforces an impression of a strong lowered eaves line to the south view – matching the roof height and line of the original central block – and also reflecting the expression of exposed structure. Secondly, the materials selected for the road frontage elevations carefully follow the palette of the existing building and the incorporation of natural timber significantly softens and blends away the potential starkness of an all-metal façade cladding.

South facing elevation illustrating scale of new and existing
1.8 Landscaping

This statement identifies the landscape character of the area, the existing arboricultural, ecological and designed landscapes. It outlines the purpose of the proposed landscape design and indicates how this design was developed taking up the professional advice of the arboricultural and ecological consultants who have undertaken reports on behalf of NPS SE Ltd.. The design is also based on intensive consultation with Tree Officers, Ecologist and Landscape Architect at NCC.

The wider landscape surrounding the development area consists of improved grassland bounded by mixed native hedges. Woodland copses are also a feature in the area.

The hard landscape has been designed to provide access and parking for 95 cars within an ornamentally planted area. The surface of the access routes is macadam and a permeable parking bay surface includes a reinforced gravel area. Pedestrian routes area also constructed of macadam. The grade of the level changes and the provision of disabled parking address the requirement for disabled access. Low water demand cut leaved alder trees, Alnus glutinosa ‘Laciniata’ feature in this area. The inclusion of specific measures to ensure adequate rooting area for these trees has also been a design consideration.

The soft landscape has been designed to incorporate a swale as an attenuation and infiltration system to deal with the water run off from the site in a sustainable methodology. An interceptor located at the eastern boundary of the site ensures the pollutants are removed from the water entering the swale. This body of water provides an ideal opportunity to create a biologically functioning system which will form the nucleus of the design of the natural habitat areas. A ledge is to be formed by sandbags, on which it is proposed to plant riparian species. The sides of the swale and surrounding grassed area are to be planted with native wildflowers and grasses. The topsoil removed from the foundation cut and the excavation of the swale will be retained on site (in a sustainable methodology) to form topsoil bunds (1.5m maximum height) which will be gently contoured. These mounds are proposed to be planted with standard and multi-stem trees in such a way as to frame views from the road to the building. Wildflowers and grasses will form the surface of the ground. The main feature trees used in the design are English oak.

An arboricultural survey which accompanies the application assesses the arboricultural implications of the development; it outlines the method statements for the implementation of the development and provides a tree protection plan. This information has been used by all the design team members during the design process to ensure that both the existing plantings, future planting design and the existing soil structure are preserved and enhanced during and following the implementation of the development. An ecology survey which accompanies the application assesses existing habitats and outlines methods to enhance the proposed development ecologically. These recommendations have been incorporated in the design of the landscape in accordance with PPS9 and Norfolk Supplementary Planning Guidance.
1.9 Appearance

The design of the proposed extension seeks to continue the expression of the theme achieved with the original building and its 2010 extension, reflecting the close affiliation with engineering and motorsport activities. (‘Like a racing car, it is sleek, dynamic and powerful… the ‘fast’ horizontal lines – the racing theme – continue in the bands of long horizontal stripes of … windows … louvres.’ Original Design Statement 2004).

The roof line of the extension is simple and crisp, with large eaves overhangs providing bold shadows (and sun shading). The eaves line and detail matches the appearance of that on the 2010 extension, with the height and scale moderated full length of the south elevation by the colonnaded ‘brise soleil’ structure.

External wall materials are guided by the palette already present: a mixture of metallic silver panels (with an added darker band to emphasize the horizontal rather than the vertical), dark grey powder coated aluminum screen frames and fascia/gutters and the warmer natural cedar louvre system (slowly fading to a silvery grey). The proportions of the horizontal window banding and the feature jointing in the cladding materials also replicates the pattern of the original.

All the materials have high thermal performance characteristics and a long, low maintenance life, during which they continue to look good. The new roof coverings are virtually flat and will be in a (grey) single ply membrane.

‘The essence for the success of this strong modern design lies – like all the best engineering products – in the quality and refinement of how it is put together. It lies in the detailing of the junctions of the elements and materials. The building form is simple and dramatic – the details should also be simple and sharp…….’ Original Design Statement 2004).
1.10 Sustainability

A ‘green’ approach influences most aspects of the design process and continues to be developed in detail as the project progresses. Proposals for the building have carefully considered and will meet the requirements of policy ENG 1 of the Regional Guidance – whereby at least 10% of on site energy will be provided from renewable or low carbon source technologies. Specifically:

Natural daylight and ventilation and extraction.
The office areas, though large and deep plan will be provided with good quality natural daylight, using centrally located low profile roof lights. A controlled natural cross ventilation system will draw fresh air through the ground floor workshops (low level louvres within the cladding system) and exit through 16 roof mounted terminals (visually matching those on the last extension). There are also 32 Nr (16 in / 16 exit) vents servicing first floor heat exchangers in the main roof. Mechanical toilet ventilation is through the louvres integrated into the walling of the lower block on the south/west elevation.

Insulation and materials.
High levels of insulation and well designed controllable cross ventilation and good shading provision, will help mitigate summertime temperatures and reduce heating and cooling energy loads. Low embodied energy and potential for recycling are being considered in the material selection.

Heating system.
A renewable energies strategy has been developed for heating both the new and the original main (currently oil fired) building. A new bio-mass boiler burning stored wood pellets (located in the service yard) and/or heat pump will provide heating to the new workshops and will be installed in a manner enabling it to replace the existing oil fired boiler plant at completion of the project. A highly efficient electrically powered heat pump system (with condensers in the service yard area where indicated) will provide under floor heating in the new office spaces.
The building containing the bio-mass plant will be clad in metal panels to match the main building. It will have a 250mm diameter flue projecting 2.5metres above the top of the building (which has a parapet at 4metres above service yard ground level).

Power generation and energy management.
A roof mounted array of south facing photovoltaic panels will be installed to generate on site electricity. Low energy lighting and energy management systems will be used to reduce and encourage awareness of energy consumption in the building.

Water consumption.
Rainwater collection and storage (harvesting) for re-use in the new toilet flushing has not been included due to the limited number of new sanitary fittings, though water saving devices, including sensor taps, will be fitted in the new facilities.
Drainage.
A Flood Risk Assessment has been prepared and discussed with the Environment Agency and is included in this submission. The sustainable dispersal of surface water (SUDS) on site has been developed, replicating the original attenuation swale strategy. Foul drainage will connect to the existing underground treatment plant recently upgraded with the 2010 extension. The connection to the existing out-flowing pipeline is within the HEC site area.

Site waste.
The constructor (once appointed) and consultants will work as a team to reduce material waste and maximize waste recycling from the construction project. An initial Site Waste Management Plan strategy document is included in this submission. The existing Centre already maintains a robust material recycling strategy, details of which are recorded in the application.

Ecology of the site.
A report has been prepared and is included in this submission.

Acoustic issues.
Adrian James Acoustics Ltd - who also advised on the design criteria for the original project – has been reappointed to this project and a report has been prepared and is included in this submission.
2.0 ACCESS STATEMENT

2.1 Vehicular and transport links

Transport Statement

A Statement has been prepared by URS Scott Wilson and is included in this planning submission.

The site is outside a reasonable walking distance of nearest bus stops. Wymondham railway station is 4.3km to the west, providing services to Norwich and Cambridge. The site is accessed by vehicles from Chapman Way (7m width with 4.5m x 150m entrance visibility splays) directly off the BB1135 Wymondham Road which links to Mulbarton, Wymondham and to the A11 artery routes.

The site currently employs 80 staff and tenants and the proposal will increase these numbers to approximately 240 staff and tenants. A vehicular trip generation has been produced for the existing and the proposed site using staff and conference information from the Centre.

Accident data was obtained from Norfolk County Council for the area surrounding the site for the past three years. It is considered that traffic to be generated by the proposed development will not have a detrimental impact upon the highway safety of the surrounding highway network.

The existing HEC site contains 121 formal parking spaces for staff, visitors and tenants. It is proposed that an additional 95 parking spaces are to be provided on the expanded site at completion of the works. The level of additional parking is in accordance with the Norfolk County Council maximum parking standards.

A total of 30 cycle spaces are to be provided for staff, visitors and tenants. A relatively low proportion of staff currently cycle or are expected to cycle to the site and this level of provision is considered suitable. A new motor cycle park is provided with 5 secure fixing hoops.

The servicing, delivery and emergency access arrangements are to remain the same as existing at present. The site access operates safely and is considered suitable for serving the proposed development.

Travel Plan

The existing HEC Travel Plan has been revised by URS Scott Wilson and is included in this planning submission.
2.2 Inclusive access

The access strategy ensures that ease of movement for pedestrians and wheelchair users throughout the scheme is prioritized.

The site topography is almost completely flat and a common ground floor level is maintained throughout all the buildings. The proposed new two storey incubators have provision for the future installation of a platform lift between floors in each of the sixteen units should the need arise. The principle has been agreed in discussions with CNC Building Control.

Full level access (ie less than 1:20 gradient / no ramp or handrails) is possible for all external areas. Parking bays for people with disabilities are close to the existing principal building entrance – and immediately adjacent to the secondary entrance to the new extension. The existing principal building entrance has automatic opening outer and inner lobby doors. All new main doorways, inside and out, will be of a suitable width for wheelchair passage.

Disabled toilets are already provided throughout the building (as is a changing room with flush floor shower) and further disabled toilet facilities are provided in the extension. Particular attention will be paid to the selection of colour, texture and signage in the detailed specification of the building and the site.

2.3 Constructor’s access and working areas

A constructor has not yet been appointed to the project team, but an initial outline Method Statement for the Construction Works is included as part of this submission.

It is proposed, in the interests of safety and the minimizing of disruption, to completely separate the constructor’s site access and working areas for the construction of the new building from the day to day operation of the existing Engineering Centre and its access road and car park.

The constructor will form a temporary site access - constructed to NCC Highway standards - off Potash Lane at a distance exceeding 120 metres from the existing junction onto the main Wymondham Road. This access will be closed and the land reinstated at project completion. This has been discussed and agreed with both NCC Highways and the owner of the land over which access will be taken, Lotus Cars.

The Highway Authority has advised that a temporary construction access directly off the B1135 would not be appropriate.

Once appointed, the constructor’s Construction stage Health and Safety Plan will reflect and develop the provisionally agreed site arrangement. It will define a protocol for the safe use and maintenance of the site access and for the working and compound areas.
3.0 CONSULTATIONS

Pre-submission meetings have been held with South Norfolk Council officers (Ian McArthur), Norfolk County Council planning officers (28/09/11 Angelina Lambert), (11.01.12 Shaun Wells) and NCC Highways officers (04/10/11 David Higgins). A formal presentation was made at the Bracon Ash Parish Council meeting on 26/09/11 (as a result of which the appearance of the incubator south elevations was amended). Landscape review held 18/10/11 (Gerald Den-Hoed, Tom Russell-Grant, Anne Crotty and Angelina Lambert).

An exhibition of the key submitted planning drawings has been displayed within the Centre since 26th October 2011 and the revised drawings will also be exhibited during the planning consultation period.

As part of the original development of this site the Norfolk Archaeological Unit confirmed on 27 May 2004 that there was no archaeological interest in the land. Policy changes since then have led to the requirement for investigative trenching within the new building and site area to be undertaken prior to the planning decision. This work is currently being arranged.

The land and boundaries have been surveyed and measured and a soil investigation report completed (based on strategic trial holes).

Pre-submission discussions have been conducted with the Environment Agency in respect of both the Flood Risk Assessment (SUDS strategy) and the redesigned foul drainage capacities.

Surface Water - Will Todd, Development and Flood Risk Team – Norfolk – 6 October 2011. Mr Todd considered that the proposal to disperse the site surface water using sustainable drainage techniques, in line with the method used for the existing centre, is the method they approve of and one which meets the requirements of Planning Policy Statement 25- Development and Flood Risk.

Foul Water - Darren Rumsey, Environmental Officer – South Norfolk Management Team – 6 October 2011. Mr Rumsey considered that providing the existing Consent to Discharge conditions, regarding numeric values for daily volume/composition for the discharge, are not exceeded they would not be concerned with the proposals in the planning application. The redesigned daily foul discharge volume for the Engineering Centre should not exceed the limits imposed.

Pre-submission discussions have been conducted with EDF in respect of the existing overhead power line traversing the south-east corner of the site adjacent to the conference room, with a view to redirecting the line underground. The high Voltage over head lines and underground cables are to be diverted underground near the boundaries of the site.
UKPN (UK Power Networks) have been contacted regarding these works and have provided budget costs based on provisional requirements. The UKPN reference number for these works is ‘Networks/EPN/400991754’ as prepared by Reginald Dorling.

Pre-submission discussions have been conducted with Lotus Cars in respect of the foul and surface water drainage design, the redirection of the overhead power line and the constructor’s temporary access route on Lotus owned land.
4.0 CONCLUSION

The principle of development was agreed when planning consent was granted for the development of the Engineering Excellence Centre on its current site. At that time, the development of the Centre was justified in its open countryside location due to the existence of an extant planning consent for Lotus and the benefits this siting would derive from its proximity to the Lotus site. Therefore the ‘in principle’ considerations contained in policies ENV 8 and EMP 4 were all satisfactorily addressed and the material considerations and benefits of siting the Centre in this location outweighed the planning policy objection.

Similar considerations apply with this application. It is considered that sufficiently strong material considerations exist to justify the grant of consent for this proposal in this location. It represents an extension to an existing successful business in the countryside, in an area with an extent planning permission for commercial use. Furthermore established development plan policies remain unchanged (notably policy EMP 6) and allow such development on sites where the principle of new business use has previously been established. In addition, Hethel has been identified for significant future development in the form of a 20ha+ technology park and neither the scale nor location of this proposal would prejudice the development of this concept.

Whilst there is a mismatch between the timetable for land allocation for a technology park in the DPD process and the need for this expansion / extension, it is apparent from demand information that if the development cannot come forward at an early stage, potential businesses will have to relocate to other technology hubs, outside the county and even outside the region. This would harm the regional / local economies and therefore any delay in the grant of consent to would be likely to harm job creation in Norfolk in the vital high value technology / knowledge based sector of the local economy.

Therefore, whilst the site is currently in a countryside location, it is considered that sufficiently strong the material considerations outweigh any policy conflict.

In addition, the proposal represents a well-designed, attractive and sustainable scheme, sensitive to the site and its surroundings, meeting national and local guidelines. This development will enable the existing Excellence Centre to expand to meet the demand for additional ‘grow on’ units and allow engineering innovation to flourish in this excellence hub.